摘要
面向光学图像的多时相、多光谱、多传感器图像的自动配准,本文描述一个基于特征的高精度图像配准算法.它以点映射配准技术为基础,处理具有全局仿射几何失真的图像配准问题.首先,通过边缘检测和相应的后处理提取封闭边界;其次,根据边界链码相关和区域不变矩匹配策略建立边界的对应,并对对应重心即匹配点对进行一致性检测获得基元控制点;最后,估计初始变换参数,并通过显著点片的相关匹配来增加控制点个数,迭代修正变换参数以提高配准精度.多种遥感图像数据的配准实验和对比试验证实了的自动算法具有较高的可靠性和配准精度.
Abstract
Aim at automatic registration of temporal images,multispectral images and multisensor optical images,a feature-based automatic image registration algorithm is described in this paper.On the basis of point mapping techniques,it deals with the registration of images with affine geometric distortion.First,with edge detection and a postprocess,the closed boundary regions in both images are extracted.Next,the correspondence of closed boundary regions is developed by chain-code correlation and invariant moments.And the center of gravity in the correspondent regions is used as matching points.After a global consistency check is applied to the matching points,the primitive control points are acquired.Finally,initial transformation parameters are estimated based on the primitive control points.The number of control points is added by salient point chip correlation matching in the reference image and the transformed image.An iterative refined parameter process is devised to improve the accuracy of registration.Experimental results with various kinds of remote sensing images have verified high accuracy and reliability this algorithm.
关键词
遥感图像配准 /
封闭边界 /
一致性检测 /
控制点 /
迭代修正参数
{{custom_keyword}} /
Key words
remote sensing image registration /
closed bounder /
consistency check /
control points /
iterative refined parameters
{{custom_keyword}} /
韦燕凤, 赵忠明, 闫冬梅, 曾庆业.
基于特征的遥感图像自动配准算法[J]. 电子学报, 2005, 33(1): 161-165.
WEI Yan-feng, ZHAO Zhong-ming, YAN Dong-mei, ZENG Qing-ye.
Remote Sensing Image Automatic Registration Based on Feature[J]. Acta Electronica Sinica, 2005, 33(1): 161-165.
中图分类号:
TP391
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
863项目 (No.2002AA133030)
{{custom_fund}}