本文利用现代图形加速卡中GPU(Graphics Process Unit)的可编程管线,实现了图形电磁计算(GRECO)方法.与原有的方法相比,在利用物理光学和物理绕射理论的基础上,计算速度提高了20倍左右.并且利用GPU实现了射线追踪算法,用于目标上多次散射的计算,使得GRECO方法可以快速计算具有凹腔结构目标的电磁散射.本方法对于目标识别和逆合成孔径成像等方面的研究具有重要的应用价值.
针对雷达目标散射中心GTD(Geometric Theory of Diffraction)模型最大似然估计中存在的高维、非线性、混合参数估计问题,提出一种基于协同粒子群优化算法的参数估计方法.该方法能够同时估计得到散射中心的类型、幅度和位置参数,且对初始值不敏感,与基于RELAX的估计方法相比,不需要反复迭代估计,降低了计算复杂度.仿真实验结果表明,该算法能够较准确地估计得到GTD模型的散射中心参数.
对规模较大、移动较频繁的MANET(Mobile Ad hoc Networks),用独立支配集构建虚拟骨干网,克服骨干节点之间必须维护连通性的问题,使得拓扑变化较快时骨干网的重构能快速实现;利用极大独立集的求解得到极小独立支配集,并给出基于该支配集的虚拟骨干网数学模型及算法;通过仿真验证算法的有效性、低复杂度和自恢复能力.
根据Wigner-Hough变换思想和广义似然比检验理论,分析了双门限情况下线性调频信号的检测性能,给出了虚警概率和检测概率的数学表达式,该表达式是Hough变换的积累单元数和检测门限的函数,然后对概率密度函数进行了合理近似,并给出了Hough变换的积累单元数计算公式,最后的计算机仿真比较了傅立叶变换和Wigner-Hough变换的LFM(Linear Frequency Modulated)信号检测性能和基于Wigner-Hough变换的不同目标起伏类型的LFM信号检测性能.