基于切割的检测器生成与匹配算法

蔡涛, 鞠时光, 仲巍, 牛德姣

电子学报 ›› 2009, Vol. 37 ›› Issue (S1) : 131-134,86.

PDF(731 KB)
PDF(731 KB)
电子学报 ›› 2009, Vol. 37 ›› Issue (S1) : 131-134,86.
科研通信

基于切割的检测器生成与匹配算法

  • 蔡涛, 鞠时光, 仲巍, 牛德姣
作者信息 +

A Cutting Based Detector Generating and Matching Algorithm

  • CAI Tao, JU Shi-guang, ZHONG Wei, NIU De-jiao
Author information +
文章历史 +

摘要

检测器生成和匹配算法直接影响到人工免疫系统的检测效率和非法抗原的检测率.为了改进现有算法存在的生成检测器与识别非法抗原的时间和空间开销较大、对非法抗原检测率较低等问题,本文提出基于切割的检测器生成与匹配算法.针对现有检测器表示方法存在的缺陷,用正超立方体表示检测器,为减少匹配算法的时间和空间开销提供了基础;依据空间包含关系设计基于空间包含的匹配算法,减少了选择检测器和检查抗原的时间和空间开销,使得分析检测器所覆盖的非法抗原较方便;依据自体在论域空间的分布,引入切割空间的方法生成检测器,消除所生成检测器间的冗余信息,减少了检测漏洞,使得所生成的检测器具有较高的非法抗原检测率和检测效率.文中建立了算法的原型系统,构造不同类型的数据集,测试识别非法抗原所需的检测器数量,以及当系统中保存不同数量的检测器时所具有的非法抗原检测率,与现有算法进行比较,验证了基于切割的检测器生成与匹配算法能有效的提高否定选择算法的性能.

Abstract

The detector generating and matching algorithm is important for efficiency and accuracy of the artificial immune system.In order to reduce the time and space consumption of detector generating,and improve efficiency and validity of detector,we present a cutting based detector generating and matching algorithm.Using super cube to present detector and providing the basis of reducing matching algorithm overhead.Using the spatial inclusion relationship to express the matching relationship between detector and antigen,then reducing time and space consumption of matching and in favour of analyzing accuracy.Cutting space to generate detector by location of self in domain,elemiating redundance between detectors,reducing hole of inspecting,and ensuring high efficiency and accuracy of inspecting antigen.Realizing prototype to test and compare with current algorithms.The results prove cutting based detector generating and matching algorithm can improve the performance of the artificial immune system.

关键词

人工免疫算法 / 检测器生成算法 / 匹配算法 / 否定选择算法 / 信息安全

Key words

artificial immune algorithm / detector generating algorithm / matching algorithm / negative selection algorithm / information security

引用本文

导出引用
蔡涛, 鞠时光, 仲巍, 牛德姣. 基于切割的检测器生成与匹配算法[J]. 电子学报, 2009, 37(S1): 131-134,86.
CAI Tao, JU Shi-guang, ZHONG Wei, NIU De-jiao. A Cutting Based Detector Generating and Matching Algorithm[J]. Acta Electronica Sinica, 2009, 37(S1): 131-134,86.
中图分类号: TP301   

参考文献

[1] Forrest S,Perelson S A,Allen L,Cherukuri R.Self-nonself discrimination in a computer[A].Proceedings of IEEE Symposium on Research in Security and Privacy[C].Los Alamitos,CA:IEEE Computer Society Press,1994.202-212.
[2] Forrest S,Hofmeyr S A,Somayaji A.Computer immunology[J].Communications of the ACM.1997,40(10):88-96.
[3] Forrest S,Hofmeyr S A.Immunology as Information Processing[M].Segel and Coheneds.Design Principles for the Immune System and Other Distributed Autonomous Systems.USA:Oxford University Press,2000.
[4] Esponda,F,Forrest S,Helman P.A formal framework for positive an negative detection scheme[J].IEEE Transaction on Systems,Man,and Cybernetics,2004,34(1):357-373.
[5] Gonzalez,F,Dasgupta D,Gomez J.The effect of binary matching rules in negative selection[A].Proceedings of Genetic and Evolutionary Computation Conference(CECCO)[C].Chicago:Springer Berlin/Heidelberg,2003,Volume 2723.195-206.
[6] Gonzalez,F,Dasgupta D,Nino F L.A randomized real-valued negative selection algorithm[A].Proceedings of 2nd International Conference on Artificial Immune System(ICARIS)[C].UK:Springer-Verlag,2003.261-272.
[7] Gonzalez,F,Dasgupta D.Anomaly detection using real-valued negative selection[J].Journal of Genetic Programming and Evolvable Machines,2003,4(4):383-403.
[8] D'haeseleer P.Further efficient algorithms for generating antibody strings[R].Technical Report CS95-3,The University of New Mexico,Albuquerque,NM,1995.
[9] Helman P,Forrest S.An efficient algorithm for generating random antibody strings[R].Technical Report CS-94-07,The University of New Mexico,Albuquerque,NM,1994.
[10] D'baeseleer P,Forrest S,Helman P.An immunological approach to change detection:algorithms,analysis and implications[A].J.McHugh and G.Dinolt,editors,Proceedings of the 1996 IEEE Symposium on Computer Security and Privacy[C].USA:IEEE Press,1996.110-119.
[11] Ji Zhou,Dasgupta D.Real-valued negative selection using variable-sized detectors[A].Proceedings of International Conference on Genetic and Evolutionary Computation(GECCO)[C] Seattle,WA,2004,June26-30.
[12] 张衡,吴礼发,张毓森,曾庆凯.一种r可变阴性选择算法及其仿真分析[J].计算机学报,2005,28(10):1614-1619.
[13] 何申,罗文坚,王煦法.一种检测器长度可变的非选择算法[J].软件学报,2007,18(6):1361-1368.
[14] Balthrop J,Forrest S,Glickman R M.Revisting LISYS:parameters and normal behavior[A].Proceedings of the 2002 Congress on Evolutionary Computation CFC2002[C].USA:IEEE Press,2002.1045-1050.
[15] Farmer D J,Packard H N,Perelson S A.The immune system,adaptation,and machine learning[J].Physical D,1986,22(1-3):187-204.

基金

国家自然科学基金 (No.60773049); 江苏省自然科学基金 (No.BK2007086)
PDF(731 KB)

1658

Accesses

0

Citation

Detail

null
段落导航
相关文章

/