稀疏性正则化的图像泊松去噪算法

孙玉宝;韦志辉;吴敏;肖亮;费选

电子学报 ›› 2011, Vol. 39 ›› Issue (2) : 285-290.

PDF(762 KB)
PDF(762 KB)
电子学报 ›› 2011, Vol. 39 ›› Issue (2) : 285-290.
学术论文

稀疏性正则化的图像泊松去噪算法

  • 孙玉宝1,2, 韦志辉1, 吴敏1, 肖亮1, 费选1
作者信息 +

Image Poisson Denoising Using Sparse Representations

  • SUN Yu-bao1,2, WEI Zhi-hui1, WU Min1, XIAO Liang1, FEI Xuan1
Author information +
文章历史 +

摘要

去除医学、天文图像中的泊松噪声是一个重要问题,基于图像在过完备字典下的稀疏表示,在Bayesian-MAP框架下建立了稀疏性正则化的图像泊松去噪凸变分模型,采用负log的泊松似然函数作为模型的数据保真项,模型中非光滑的正则项约束图像表示系数的稀疏性,并附加非负性约束,保证去噪图像的非负性.基于分裂Bregman方法,提出了数值求解该模型的多步迭代快速算法,通过引入辅助变量与Bregman距离可将原问题转化为两个简单子问题的迭代求解,降低了计算复杂性.实验结果验证了本文模型与数值算法的有效性.

Abstract

The removal of Poisson noise is essential in medical and astronomical imaging.In the framework of Bayesian-MAP estimation,a sparsity regularized convex functional model is proposed to denoise Poisson noisy image in terms of the sparse representation of the underlying image in an over-complete dictionary.The negative-log Poisson likelihood functional is used for data fidelity term and non-smooth regularization term constrains the sparse representations of the underlying image over the dictionary.An additional term is also added in the functional to ensure the non-negative of the denoised image.Based on the Split Bergman iteration method,a multi-step fast iterative algorithm is proposed to solve the above model numerically.By introducing an intermediate variable and Bergman distance,the original problem is transformed into solving two simple sub-problems iteratively,thus the computational complexity is decreased rapidly.Experimental results demonstrate the effectiveness of our recovery model and the numerical iteration algorithm.

关键词

图像去噪 / 稀疏表示 / 泊松噪声 / 分裂Bregman算法 / 邻近算子

Key words

image denoising / sparse representation / Poisson noise / split Bergman method / proximal operator

引用本文

导出引用
孙玉宝;韦志辉;吴敏;肖亮;费选. 稀疏性正则化的图像泊松去噪算法[J]. 电子学报, 2011, 39(2): 285-290.
SUN Yu-bao;WEI Zhi-hui;WU Min;XIAO Liang;FEI Xuan. Image Poisson Denoising Using Sparse Representations[J]. Acta Electronica Sinica, 2011, 39(2): 285-290.
中图分类号: TP391   
PDF(762 KB)

Accesses

Citation

Detail

段落导航
相关文章

/