针对真实环境中各种背景噪声下的鸟类声音识别问题,提出了一种基于新型抗噪特征提取的鸟类声音识别技术.首先,根据适用于高度非平稳环境下的噪声估计算法求出噪声功率谱.其次,使用多频带谱减法对声音功率谱进行降噪处理.接着,结合降噪的声音功率谱提取抗噪幂归一化倒谱系数(APNCC).最后,采用支持向量机(SVM)分别对提取的APNCC,幂归一化倒谱系数(PNCC)和Mel频率倒谱系数(MFCC)对34种鸟类声音进行不同环境和信噪比情况下的对比实验.实验表明,提取的APNCC具有较好的平均识别效果及较强的噪声鲁棒性,更适用于信噪比低于30dB环境下的鸟类声音识别.
Abstract
In order to improve the accuracy of bird sounds recognition under different kinds of noise environments in the real world,a new bird sounds recognition technology based on the APNCC extraction was proposed.First,the noise estimation algorithm for highly non-stationary environments was used to estimate the noise power spectrum of the bird sound in the noise environment.Second,the multi-band spectral subtraction was presented to achieve the background noise reduction.Then,the estimated clean bird sound spectrum was combined with the process of the PNCC extraction to calculate the APNCC.Finally,the comparison experiments of 34 bird sounds recognition in 3 different real environments under different SNRs were constructed,based on the combination of the SVM classifier and 3 different features,namely the APNCC,PNCC and MFCC.The experimental results show that the APNCC outperforms other features in the average recognition rate and the noise robustness,especially for the conditions of all SNRs lower than 30dB.
关键词
鸟类声音识别 /
非平稳噪声估计 /
多频带谱减法 /
抗噪幂归一化倒谱系数 /
Mel频率倒谱系数
{{custom_keyword}} /
Key words
bird sounds recognition /
non-stationary noise estimation /
multi-band spectral subtraction /
anti-noise power normalized cepstral coefficients (APNCC) /
Mel-frequency cepstral coefficients (MFCC)
{{custom_keyword}} /
中图分类号:
TP391.4
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Somervuo P,Harma A.Bird song recognition based on syllable pair histograms[A].IEEE International Conference on Acoustics,Speech,and Signal Processing[C].Montreal,Canada:IEEE Press,2004:825-828.
[2] Cheng J,Sun Y,Ji L.A call-independent and automatic acoustic system for the individual recognition of animals:a novel model using four passerines[J].Pattern Recognition,2010,43(11):3846-3852.
[3] 冯霞,龚晓峰,张利丹,武瑞娟.基于纹理特征的背景噪声提取的应用研究[J].电子学报,2009,37(9):2092-2095. Feng Xia,Gong Xiao-feng,Zhang Li-dan,Wu Rui-juan.Research of background noise extraction based on texture feature[J].Acta Electronica Sinica,2009,37(9):2092-2095.(in Chinese)
[4] Chu W,et al.Noise robust bird song detection using syllable pattern-based hidden markov models[A].IEEE International Conference on Acoustics,Speech,and Signal Processing[C].Prague,Czech Republic:IEEE Press,2011:345-348.
[5] Bardeli R,Wolff D,Kurth F,et al.Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring[J].Pattern Recognition Letters,2010,31(12):1524-1534.
[6] Kim C,Stern R.Feature extraction for robust speech recognition based on maximizing the sharpness of the power distribution and on power flooring[A].IEEE International Conference on Acoustics,Speech,and Signal Processing[C].Dallas,TX:IEEE Press,2010.4574-4577.
[7] Rangachari S,Loizou P C.A noise estimation algorithm for highly non-stationary environments[J].Speech Communication,2006,48(2):220-231.
[8] Kamath S,et al.A multi-band spectral subtraction method for enhancing speech corrupted by colored noise [A].IEEE International Conference on Acoustics,Speech,and Signal Processing[C].Orlando,FL:IEEE Press,2002.IV-4164-IV-4164.
[9] 王,钱志鸿,王雪,程光明.基于伽马通滤波器组的听觉特征提取算法研究[J].电子学报,2010,38(3):525-528. Wang Yue,Qian Zhi-hong,Wang Xue,Cheng Guang-ming.An auditory feature extraction algorithm based on γ-tone filter-banks[J].Acta Electronica Sinica,2010,38(3):525-528.(in Chinese)
[10] Slaney M.Auditory toolbox version 2[CP/OL].https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolbox.zip,2012-5-14.
[11] Universitat Pompeu Fabra.Repository of sound under the creative commons license,Freesound.org[CP/OL].http://www.freesound.org,2012-5-14.
[12] Chang C C,Lin C J.Libsvm version 3.12[CP/OL].http://www.csie.ntu.edu.tw/~cjlin/libsvm/ libsvm-3.12.zip,2012-5-14.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金 (No.61075022)
{{custom_fund}}