电子学报 ›› 2013, Vol. 41 ›› Issue (6): 1207-1213.DOI: 10.3969/j.issn.0372-2112.2013.06.026

• 科研通信 • 上一篇    下一篇

脑电信号中眼电伪迹自动去除方法的研究

李明爱, 崔燕, 杨金福   

  1. 北京工业大学电子信息与控制工程学院, 北京 100124
  • 收稿日期:2012-04-05 修回日期:2012-09-25 出版日期:2013-06-25
    • 作者简介:
    • 李明爱 女,1966年生,河南鹤壁人,2006年于北京工业大学获得博士学位,现为北京工业大学副教授、硕导,主要从事脑机接口、智能信息处理与模式识别等领域的研究. E-mail:limingai@bjut.edu.cn 崔 燕 女,1987年生,江苏盐城人,2010年获得南京工程学院学士学位,现为北京工业大学模式识别与智能系统专业硕士研究生,主要研究方向为脑机接口、信息处理与模式识别.
    • 基金资助:
    • 北京市教委项目面上项目 (No.KM201110005005); 北京市自然科学基金 (No.4112011); 北京工业大学基础研究基金 (No.X4002011201101)

Research on Removing Ocular Artifact Automatically From EEG Signals

LI Ming-ai, CUI Yan, YANG Jin-fu   

  1. College of Electronic Information & Control Engineering, Beijing University of Technology, Beijing 100124, China
  • Received:2012-04-05 Revised:2012-09-25 Online:2013-06-25 Published:2013-06-25
    • Supported by:
    • General Program of R&D Program of Beijing Municipality Education Commission (No.KM201110005005); Natural Science Foundation of Beijing Municipality,  China (No.4112011); Basic Research Foundation of Beijing University of Technology (No.X4002011201101)

摘要: 针对实际采集的脑电信号受眼电干扰较大,提出一种基于离散小波变换(DWT)与独立分量分析(ICA)的自动去除眼电伪迹的方法(DWICA).对采集的多导脑电和眼电信号进行离散小波变换,获取多尺度小波系数,将串接小波系数作为ICA的输入;利用基于负熵判据的FastICA算法实现独立成分的快速获取,引入夹角余弦准则自动识别眼迹成分,并经过ICA逆变换将剔除眼迹后的独立成分投影返回到原脑电信号各个电极;通过DWT逆变换重构信号,即可得到去除眼迹的各导脑电信号.实验结果表明,DWICA方法极大地提高了脑电信号的信噪比,抗噪能力强且实时性好,为脑电信号的在线预处理提供了新思路.

关键词: 脑电, 眼电伪迹, 离散小波变换, 独立分量分析, 自动去除

Abstract: Electroencephalography(EEG)is easily affected by ocular artifact(OA),which appears in EEG randomly as a big pulse.Based on discrete wavelet transform(DWT)and independent component analysis(ICA),a novel automatic method of OA removal,denoted as DWICA,was proposed.Firstly,DWT was applied to the recorded EEG and electrooculogram(EOG)to obtain multiple scale coefficients,and the combined coefficients were considered as the input for ICA.Secondly,the independent components were acquired based on FastICA algorithm with negentropy criterion.The angle cosine criterion was introduced to recognize ocular artifact component.Furthermore,the inverse algorithm of ICA was applied to project the independent components without OA to original electrodes.Finally,the EEG were reconstructed using the inverse algorithm of DWT,and then the pure EEG were obtained.Experimental results show that DWICA is preferable in automatic removal of OA.The method provides a new idea for on-line preprocessing of EEG signals.

Key words: electroencephalography, ocular artifact, discrete wavelet transform(DWT), independent component analysis(ICA), automatic removal

中图分类号: