[1] 王李冬,魏宝刚,袁杰.基于概率主题模型的文档聚类[J].电子学报,2012,11(11):2346-2350. Wang Li-dong,Wei Bao-gang,Yuan Jie.Document clustering based on probabilistic topic model[J].Acta Electronica Sinica,2012,11(11):2346-2350.(in Chinese) [2] 吴永辉,王晓龙,丁宇新, 徐军,郭鸿志.基于主题的自适应、在线网络热点发现方法及新闻推荐系统[J].电子学报,2010,11(11):2620-2624. Wu Yong-hui,Wang Xiao-long,Ding Yu-xin,Xu Jun,Guo Hong-zhi.Adaptive on-line web topic detection method for web news recommendation system[J].Acta Electronica Sinica,2010,11(11):2620-2624.(in Chinese) [3] Blei D M,Ng A Y,Jordan M I.Latent Dirichlet allocation[J].Machine Learning Research,2003,3:993-1022. [4] Lafferty J D,Blei M D.Correlated topic models [A].Advances in Neural Information Processing Systems,Proceedings of the 2005 Conference [C].Vancouver:Bradford Books,2006.147-155. [5] Li W,McCallum A.Pachinko allocation:DAG-structured mixture models of topic correlations [A].Proceedings of the 23rd International Conference on Machine Learning [C].New York:ACM,2006.577-584. [6] D M Blei,J McAuliffe.Supervised topic models [A].Advances in Neural Information Processing System [C].Vancouver,British Columbia Canada:Curran,2008.121-128. [7] Ramage D,Hall D,Nallapati R,et al.Labeled LDA:A supervised topic model for credit attribution in multi-labeled corpora [A].Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing Association for Computational Linguistics [C].Singapore:Springer,2009.248-256. [8] Ramage D,Manning C D,Dumais S.Partially labeled topic models for interpretable text mining [A].Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining [C].New York:ACM,2011.457-465. [9] Hofmann T.Probabilistic latent semantic analysis [A].Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence [C].Morgan Kaufmann,San Mateo,CA:Morgan Kaufmann Publishers Inc,1999.289-296. [10] Minka T,Lafferty J.Expectation-propagation for the generative aspect model [A].Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence [C].Morgan Kaufmann,San Mateo,CA:Morgan Kaufmann Publishers Inc,2002.352-359. [11] Griffiths T L,Steyvers M.Finding scientific topics[J].National Academy of Sciences of the United States of America,2004,101(Suppl 1):5228-5235. [12] Griffiths T L,Steyvers M,Blei D M,et al.Integrating topics and syntax[J].Advances in Neural Information Processing Systems,2005,17:537-544. [13] Zhang M L,Zhou Z H.ML-KNN:A lazy learning approach to multi-label learning [J].Pattern Recognition,2007,40(7):2038-2048. [14] Spyromitros E,Tsoumakas G,Vlahavas I.An empirical study of lazy multilabel classification algorithms [A].Proceedings of the 5th Hellenic Conference on Artificial Intelligence [C].Berlin,Heidelberg:Springer-Verlag,2008.401-406. [15] Cheng W,Hüllermeier E.Combining instance-based learning and logistic regression for multilabel classification[J].Machine Learning,2009,76(2-3):211-225. [16] C Vens,J Struyf,L Schietgat,S Dzeroski,H Blockeel.Decision trees for hierarchical multi-label classification[J].Machine Learning,2008,73(2):185-214. |