针对传统l-多样性模型仅考虑等价类中敏感值形式上的差异,而忽略敏感值的敏感度差异,且难以抵御一种新的攻击方式——敏感性攻击的问题,提出了一种使用逆文档频率IDF度量敏感值的敏感度的方法,并使用属性分解的方式构造敏感组,以避免多敏感属性数据表的QI属性泛化造成的高信息损失.同时,还提出了一种面向敏感性攻击的多敏感属性(l1,l2,…,l<em>d)-多样性隐私保护算法MICD,该算法通过敏感度的逆聚类实现敏感组中敏感值的敏感度差异,以提高多敏感属性数据表抵御敏感性攻击的能力.实验结果表明,MICD算法能够较好的抵御敏感性攻击,且具有较小的信息损失量.
Abstract
In allusion to l-diversity model not considering sensitivity differences between the sensitive attributes,a new attack pattern which named sensitivity attack was proposed.Secondly,a new sensitive groups constructing method which based on sensitive attributes decomposition was proposed,and a keyword weight evaluation method called IDF was used to measure the sensitivity of the sensitive values.At the same time,a multi sensitive attributes (l1,l2,…,ld)-diversity privacy preserving method for sensitivity attack which called MICD was proposed,which guaranteed the sensitivity difference between sensitive values in sensitive groups by sensitivity inverse clustering.Experiment results demonstrated that the MICD algorithm could better protect sensitive attributes against sensitivity attack,and more effective on information loss.
关键词
隐私保护 /
敏感性攻击 /
逆聚类 /
多敏感属性 /
(l1,l2,…,ld)-多样性 /
敏感度差异
{{custom_keyword}} /
Key words
privacy preserving /
sensitivity attack /
inverse clustering /
multi sensitive attribute /
(l1,l2,…,ld)-diversity /
sensitivity degree difference
{{custom_keyword}} /
中图分类号:
TP309.2
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Sweeney L.k-anonymity:A model for protecting privacy[J].International Journal on Uncertainty,Fuzziness and Knowledge Based Systems,2002,10(5):557-570.
[2] Sweeney L.Computational disclosure control:A primer on data privacy protection[D].Massachusetts Institute of Technology,2001.
[3] Machanavajjhala A,Kifer D,Gehrke J.l-diversity:Privacy beyond k-anonymity[J].ACM Transactions on Knowledge Discovery from Data,2007,1(1):1-52.
[4] 杨高明,杨静,张健沛.聚类的(α,k)-匿名数据发布[J].电子学报,2011,39(8):1941-1946. Yang Gaoming,Yang Jing,Zhang Jianpei.Achieving (α,k)-anonymity via clustering in data publishing[J].Acta Electronica Sinica,2011,39(8):1941-1946.(in Chinese)
[5] Batya Kenig,Tamir Tassa.A practical approximation algorithm for optimal k-anonymity[J].Data Mining and Knowledge Discovery,2012,1(25):134-168.
[6] 韩建民,于娟,虞慧群,等.面向敏感值的个性化隐私保护[J].电子学报,2010,38(7):1723-1728. Han Jianmin,Yu Juan,Yu Huiqun,et al.Individuation privacy preservation oriented to sensitive values[J].Acta Electronica Sinica,2010,38(7):1723-1728.(in Chinese)
[7] Xiaoxun Sun,Min Li,Hua Wang.A family of enhanced (L,α)-diversity models for privacy preserving data publishing[J].Future Generation Computer Systems,2011,27(3):348-356.
[8] 王波,杨静.一种基于逆聚类的个性化隐私匿名方法[J].电子学报,2012,40(5):883-890. Wang Bo,Yang Jing.A personalized privacy anonymous method based on inverse clustering[J].Acta Electronica Sinica,2012,40(5):883-890.(in Chinese)
[9] 杨晓春,王雅哲,王斌,等.数据发布中面向多敏感属性的隐私保护方法[J].计算机学报,2008,31(4):574-587. Yang Xiaochun,Wang Yazhe Wang bin,et al.Privacy preserving approaches for multiple sensitive attributes in datapublishing[J].Chinese Journal of Computers,2008,31(4):574-587.(in Chinese)
[10] Ye Y,Liu Y,Wang C.Decomposition:privacy preservation for multiple sensitive attributes[A].Proc of the 14th International Conf on Database Systems for Advanced Applications[C].Berlin:Springer,2009.486-490.
[11] Devayon D,Dhruba K.Decomposition+:Improving l-diversity for multiple sensitive attributes[A].Proc of 2nd International Conf on Advances in Computer Science and Information Technology[C].Berlin:Springer,2012.403-412.
[12] Xiaokui Xiao,Ke Yi,Yufei Tao.The hardness and approximation algorithms for l-diversity[A].Proc of the 13th International Conf on Extending Database Technology[C].New York:ACM,2010.135-146.
[13] Ninghui Li,Jian Zhang,Molloy I.Slicing:A new approach for privacy preserving data publishing[J].IEEE Transactions on Knowledge and Data Engineering,2009,24(3):561-574.
[14] 王智慧,许俭,汪卫,等.一种基于聚类的数据匿名方法[J].软件学报.2010,21(4):680-693. Wang Zhihui,Xu Jian,Wang Wei,et al.Clustering-based approach for data anonymization[J].Journal of Software,2010,21(4):680-693.(in Chinese)
[15] J Liu,K Wang.On optimal anonymization for l+-diversity[A].Proc of IEEE 26th International Conf on Data Engineering[C].New York:IEEE Computer Society,2010.213-224.[FL)] [FL(2K2]
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
[JP2]国家自然科学基金 (No.61370083,No.61073043,No.61073041); 高等学校博士学科点专项科研基金 (No.20112304110011,No.20121204110012); 哈尔滨市科技创新人才研究专项资金 (优秀学科带头人) (No.2011RFXXG015)
{{custom_fund}}