
一类新的能够渐进达到Gilbert-Varshamov界的Alternant子类码
A New Subclass of Alternant Codes Can Meet the Gilbert-Varshamov Bound
本文基于Maximum Distance Separable(MDS)码的Hamming重量分布提出一类新的二元Alternant子类码.分析表明这类新的子类码包含整个BCH码类,并且可以渐进达到Gilbert-Varshamov(GV)界.
A new subclass of binary Alternant codes is proposed based on the Hamming weight distribution of Maximum Distance Separable(MDS) codes.It is shown that the new codes include the whole BCH codes subclass and can asymptotically meet the Gilbert-Varshamov(GV) bound.
Alternant码 / BCH码 / Gilbert-Varshamov界 / Hamming重量分布 / Maximum Distance Separable(MDS)码 {{custom_keyword}} /
Alternant codes / BCH codes / Gilbert-varshamov bound / Hamming weight distribution / Maximum distance separable(MDS) codes {{custom_keyword}} /
[1] MacWilliams F J,Sloane N J A.The Theory of Error-Correcting Codes[M]. Amsterdam:The Netherlands:North-Holland,1981.1-369.
[2] 冯克勤.纠错码的代数理论[M]. 北京:清华大学出版社,2005.1-80. Keqin Feng.The Algebraic Theory of Error-Correcting Codes[M]. Beijing:Tsinghua University Press,2005.1-80.(in Chinese)
[3] Berlekamp E.Goppa codes[J]. IEEE Transactions on Information Theory,1973,19(5):590-592.
[4] Martinez-Perez C,Willems W.Is the class of cyclic codes asymptotically good?[J]. IEEE Transactions on Information Theory,2006,52(2):696-700.
[5] Ezerman M F,Grassl M,Sole P.The weights in MDS codes[J]. IEEE Transactions on Information Theory,2011,57(1):392-396.
国家自然科学基金 (No.61170321); 高等学校博士学科点专项科研基金 (No.20110092110024); 江苏省普通高校研究生科研创新计划 (No.CXZZ13_0105)
/
〈 |
|
〉 |