基于视频多目标跟踪的高度测量算法

姜明新, 王培昌, 王洪玉

电子学报 ›› 2015, Vol. 43 ›› Issue (3) : 591-596.

PDF(1238 KB)
PDF(1238 KB)
电子学报 ›› 2015, Vol. 43 ›› Issue (3) : 591-596. DOI: 10.3969/j.issn.0372-2112.2015.03.026
科研通信

基于视频多目标跟踪的高度测量算法

  • 姜明新1,2, 王培昌2, 王洪玉1
作者信息 +

Height Estimation Algorithm Based on Visual Multi-Object Tracking

  • JIANG Ming-xin1,2, WANG Pei-chang2, WANG Hong-yu1
Author information +
文章历史 +

摘要

本文提出了一种基于视频多目标跟踪的高度测量算法.首先,采用码本模型检测前景,利用图割理论实现对多目标的跟踪.然后,提取每一帧中目标的头部特征点和脚部特征点,根据投影几何的约束关系计算每个目标的高度.最后,融合多帧的测量结果进行数据优化.本文提出的算法不需要对相机进行完全标定,只需计算摄像机的灭点和地平面的灭线,降低了计算的复杂度.实验结果表明,本文提出的算法具有较高的测量精度,对遮挡和运动状态变化具有较强的鲁棒性,同时,能够满足实时性要求.

Abstract

In this paper, we propose a height estimation algorithm based on visual multi-object tracking.Firstly, the foreground is detected by using codebook modeling algorithm, and multi-object tracking is performed by using graph cuts.Then, the head feature points and the feet feature points of objects are extracted in each frame, and the height of every object is computed according to projective geometry constraint.Finally, data optimization is performed by fusing multi-frame measurement results.This method does not require full camera calibration, but require computing the vanishing point of camera and the vanishing line of ground.Using this method, the computational complexity can be reduced.The experimental results demonstrate that our method has higher measurement accuracy, and is robust to occlusion and the changing of motion state.Meanwhile, it can also achieve real-time performance.

关键词

高度测量 / 视频多目标跟踪 / 投影几何约束 / 图割

Key words

height estimation / visual multi-object tracking / projective geometry constraint / graph cuts

引用本文

导出引用
姜明新, 王培昌, 王洪玉. 基于视频多目标跟踪的高度测量算法[J]. 电子学报, 2015, 43(3): 591-596. https://doi.org/10.3969/j.issn.0372-2112.2015.03.026
JIANG Ming-xin, WANG Pei-chang, WANG Hong-yu. Height Estimation Algorithm Based on Visual Multi-Object Tracking[J]. Acta Electronica Sinica, 2015, 43(3): 591-596. https://doi.org/10.3969/j.issn.0372-2112.2015.03.026
中图分类号: TP391   

参考文献

[1] Shao J, Zhou S K, Chellappa R.Robust height estimation of moving objects from uncalibrated videos[J].IEEE Transactions on Image Processing, 2010, 19(8):2221-2232.
[2] 董秋雷, 吴毅红, 胡占义.基于视频的实时自动人体高度测量[J].自动化学报, 2009, 35(2):137-144. Dong Q L, Wu Y H, Hu Zh Y.Video-based real-time automatic measurement for the height[J].Acta Automatica Sinica, 2009, 35(2):137-144.(in Chinese)
[3] Chellappa R, Turaga P K.Recent advances in age and height estimation from still images and video[A].IEEE International Conference on Automatic Face & Gesture Recognition[C].Santa Barbara, California:IEEE, 2011.91-96.
[4] Guo F, Chellappa R.Video metrology using a single camera[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7):1329-1335.
[5] 魏玮, 吕艳, 石可红.监控视频关键帧的人体高度测量算法[J].计算机系统应用, 2012, 21(6):195-198. Wei W, Lv Y, Shi K H.Body height measurement algorithm in key frame from surveillance video[J].Computer Systems & Applications, 2012, 21(6):195-198.(in Chinese)
[6] Benabdelkader C, Yacoob Y.Statistical body height estimation from a single image[A].IEEE International Conference on Automatic Face & Gesture Recognition[C].Amsterdam, Netherlands:IEEE, 2008.1-7.
[7] Chen Z, Pears N, Liang B.A method of visual metrology from uncalibrated images[J].Pattern Recognition Letters, 2006, 27(13):1447-1456.
[8] Momeni-K M, Diamantas S Ch, Ruggiero F, Siciliano B.Height estimation from a single camera view[A].Proceedings of the International Conference on Computer Vision Theory and Applications(Volume 1)[C].Rome, Italy:SciTe Press, 2012.358-364.
[9] Park S W, Kim T, Choi J S.Robust estimation of heights of moving people using a single camera[A].Proceedings of the International Conference on IT Convergence and Security[C].Pyeong Chang, Korea:Springer, 2012.389-405.
[10] Boykov Y, Veksler O, Zabih R.Fast approximate energy minimization via graph cuts[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(11):1222-1239.
[11] Papadakis N, Bugeau A.Tracking with Occlusions via Graph Cuts [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(1):144-157.
[12] Boykov Y, Kolmogorov V.An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9):1124-1137.
[13] Kim K, Chalidabhongse T H, Harwood D, Davis L.Real-Time foreground-background segmentation using codebook model[J].Real-Time Imaging, 2005, 11(3):167-256.
[14] Criminisi A, Reid I, Zisserman A.Single view metrology[J].International Journal Computer Vision, 2000, 40(2):123-148.
[15] 吴朝福 著.计算机视觉中的数学方法[M]:北京:科学出版社, 2008.68-80.
[16] Hartley R, Zisserman A.Multipleview geometry in computer vision[M].Second Edition.Cambridge:Cambridge University Press, 2003.363-406.
[17] Rother C.A new approach for vanishing point detection in architectural environments[J].Image and Vision Computing, 2002, 20(9):647-655.
[18] Lv F, Zhao T, Nevatia R.Camera calibration from video of a walking human[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(9):1513-1518.

基金

国家自然科学基金项目 (No.61172058,No.61403060); 中央高校自主基金 (No.DC110321); 辽宁省教育厅资助项目 (No.L2012476); 中国博士后科学基金资助项目 (No.2014M551081); 大连民族学院人才引进项目 (No.20136212)

PDF(1238 KB)

Accesses

Citation

Detail

段落导航
相关文章

/