
基于PPSO-MPC的多雷达协同反隐身指示搜索任务规划
Mission Planning for Cued Search of Cooperative Anti-Stealth Detection Based on PPSO-MPC
针对ESM/雷达协同反隐身探测中的指示搜索问题,引入模型预测控制(Model Predictive Control,MPC)理论,给出指示搜索任务规划的MPC框架,建立指示搜索的目标状态预测模型和在线滚动优化模型.针对模型求解,引入粒子群优化(Particle Swarm Optimization,PSO)算法,设计了高维矩阵粒子编码方式,引入尺度计算因子处理边界约束,引入概率模型处理离散变量,设计实现了一种"多主节点-单从节点"的 (Multi-Master-Single-Slave,MM-SS)多种群并行计算策略.仿真结果表明,所建立的模型能够在不确定、多目标环境下实现对多雷达的高效协同控制,所提出的模型求解算法能够实现对滚动优化问题的快速、高效求解,即模型和算法的有效性得到了验证.
To solve the cued search problem when ESMs and radars cooperate with each other in anti-stealth detection,a MPC-based(Model Predictive Control) mission planning frame for cued search is proposed,and the targets' states predictive model and on-line receding optimization model are established based on the MPC theory.Then,this paper puts forward an improved parallel PSO(Particle Swarm Optimization) algorithm to solve the problem.Concretely,a high-dimensional matrix mode is designed for particle coding,a scale-factor is imported for boundary restriction,a probabilistic model is proposed for processing discrete variable,and a new multi-swarm parallel strategy called MM-SS(Multi-Master-Single-Slave) is presented for promoting optimization efficiency.Experiments show that the established model realizes an efficient control of multi-radars in condition of uncertainty and multiple targets,and that the proposed algorithm can solve the receding optimization problem efficiently.That is,the validity of the model and algorithm is demonstrated.
反隐身 / 指示搜索 / MPC / 任务规划 / 滚动优化 / PSO {{custom_keyword}} /
anti-stealth / cued search / MPC / mission planning / receding optimization / PSO {{custom_keyword}} /
[1] 沈阳,陈永光.多基地雷达反隐身分布式检测融合算法研究[J].电子学报,2007,35(3):506-510. Shen Y,Chen Y G.Study on fusion arithmetic of multi radar distributed detection system against stealthy targets[J].Acta Electronica Sinica,2007,35(3):506-510.(in Chinese)
[2] 李修和,陈永光.电子战环境下双基地雷达对隐身目标的跟踪技术研究[J].电子学报,2004,32(6):918-922. Li X H,Chen Y G.Tracking technology of bistatic radar against stealthy targets in EW Environment[J].Acta Electronica Sinica,2004,32(6):918-922.( in Chinese)
[3] Kemkemian S,et al.On co-operative localization strategies using ESM & radar on board airborne platforms[A].Proceedings of 2011 IEEE CIE International Conference on Radar[C].Chengdu,China:IEEE,2011.4-7.
[4] Kemkemian S,et al.Toward common radar & EW multifunction active arrays[A].Proceedings of 2010 IEEE International Symposium on Phased Array Systems and Technology (ARRAY)[C].Waltham,USA:IEEE,2010.777-784.
[5] 王国宏,毛士艺.ESM对2D雷达引导性能分析[J].航空学报,2002,23(4):298-301. Wang G H,Mao S Y.Performance analysis of an ESM guiding a 2D radar[J].Acta Aeronautica Et Astronautica Sinica,2002,23(4):298-301.(in Chinese)
[6] 王国宏,何友,毛士艺.IRST对3D雷达引导性能分析[J].电子学报,2002,30(12):1737-1740. Wang G H,He Y,Mao S Y.Performance analysis of using an IRST sensor cueing a 3D radar[J].Acta Electronica Sinica,2002,30(12):1737-1740.(in Chinese)
[7] 张华睿,杨宏文,郁文贤.多目标情况下IRST 和雷达的指示交接问题[J].电子与信息学报,2011,33(5):1101-1106. Zhang H R,Yang H W,Yu W X.The handoff method of IRST and radar under multi-target scenario[J].Journal of Electronics & Information Technology,2011,33(5):1101-1106.(in Chinese)
[8] Lu J B,Hu W D,Xiao H.Novel cued search strategy based on information gain for phased array radar[J].Journal of Systems Engineering and Electronics,2008,19(2):292-297.
[9] 胡卫东,郁文贤,卢建斌.基于协方差控制的相控阵雷达资源管理算法[J].电子学报,2007,35(3):402-408. Hu W D,Yu W X,Lu J B.Resource management algorithm based on covariance control for phased array radars[J].Acta Electronica Sinica,2007,35(3):402-408.( in Chinese)
[10] James B R,David Q M.Model Mredictive Control:Theory and Design[M].London:Nob Hill Publications,2009.
[11] Hong T,Peng G,et al.A novel evolutionary strategy for particle swarm optimization[J].Chinese Journal of Electronics,2009,18(4):771-774.
[12] Yamille D V,Ganesh K V.Particle swarm optimization:Basic concepts,variants and applications in power systems[J].IEEE Transactions on Evolutionary Computation,2008,12(2):171-195.
[13] Paquet U,Engelbrecht A P.A new particle swarm optimiser for linearly constrained optimization[A].Proceedings of IEEE Congress on Evolutionary Computation[C].Canberra,Australia:IEEE,2003.227-233.
[14] Paquet U.Training support vector machines with particle swarms[D].Pretoria:University of Pretoria,2003.
[15] Hu X,Eberhart R C,Shi Y.Swarm Intelligence for permutation optimization:a case study on n-Queens problem[A].Proceedings of IEEE Swarm Intelligence Symposium[C].Indianapolis,Indiana,USA:IEEE,2003.243-246.
[16] Wang Y,Stephen B.Fast model predictive control using online optimization[J].IEEE Transactions on Control Systems Technology,2010,18(2):267-277.
[17] Stewart B T,Venkat A N,James B R.Cooperative distributed model predictive control[J].Systems & Control Letters,2010,59(8):460-469.
[18] 徐祖华,赵均,钱积新.机遇多自由度性能指标的模型预测控制算法[J].电子学报,2008,36(5):906-909. Xu Z H,Zhao J,Qian J X.An improved model predictive control algorithm based on multi-degree of freedom performance index[J].Acta Electronica Sinica,2008,36(5):906-909.(in Chinese)
[19] 任佳,高晓光,张艳.移动威胁情况下的无人机路径规划索[J].控制理论与应用,2010,27(5):641-647. Ren J,Gao X G,Zhang Y.Path planning based on model predictive control algorithm under moving threat[J].Control Theory & Applications,2010,27(5):641-647.(in Chinese)
[20] 彭辉,沈林成,朱华勇.基于分布式模型预测控制的多UAV协同区域搜索[J].航空学报,2010,31(3):593-601. Peng H,Shen L C,Zhu H Y.Multiple UAV cooperative area search based on distributed model predictive control[J].Acta Aeronautica Et Astronautica,Sinica,2010,31(3):593-601.(in Chinese)
[21] Chen Y,Feng Y,Li X Y.A parallel system for adaptive optics based on parallel mutation PSO algorithm[J].Optik,2014,125(1):329-332.
国家自然科学基金 (No.61305133); 全国高校博士点基金 (No.20116102110026); 航天技术支撑基金 (No.2013-HT-XGD); 中央高校基本科研业务专项资金资助 (No.3102015ZY092)
/
〈 |
|
〉 |