电子学报 ›› 2016, Vol. 44 ›› Issue (8): 1820-1825.DOI: 10.3969/j.issn.0372-2112.2016.08.007

• 学术论文 • 上一篇    下一篇

可靠的虚拟网络映射算法研究

刘光远1, 苏森2   

  1. 1. 石家庄铁道大学信息科学与技术学院, 河北石家庄 050043;
    2. 北京邮电大学网络与交换技术国家重点实验室, 北京 100876
  • 收稿日期:2015-01-17 修回日期:2016-05-26 出版日期:2016-08-25
    • 作者简介:
    • 刘光远 男,1981年出生.北京邮电大学网络技术研究院博士.现为石家庄铁道大学信息学院教师.研究方向为云计算、网络虚拟化.E-mail:gyuanliu@163.com;苏森 男,1971年出生.北京邮电大学网络技术研究院教授,博士生导师.研究方向为下一代网络、服务计算.
    • 基金资助:
    • 国家自然科学基金 (No.61170274); 河北省教育厅科研基金 (No.QN2016270)

The Research of Reliable Virtual Network Mapping Algorithm

LIU Guang-yuan1, SU Sen2   

  1. 1. School of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China;
    2. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2015-01-17 Revised:2016-05-26 Online:2016-08-25 Published:2016-08-25
    • Supported by:
    • National Natural Science Foundation of China (No.61170274); Research Fund of Education Department of Heibei Province (No.QN2016270)

摘要: 网络虚拟化技术允许多个异构的虚拟网络共享一个底层物理网络资源,为目前的网络架构提供了一种有效的扩展手段.近年来,底层网络基础设施失效事件频发,因此如何提高虚拟网络的可靠性成为目前该领域一个研究热点.本文针对底层节点失效后虚拟拓扑如何最大化连通问题进行研究,设计了一种基于割集和拥塞感知的虚拟网络映射机制.实验表明,该方法在不预留保护资源的情况下,可获得更好的底层网络长期运行平均收益.

关键词: 网络虚拟化, 虚拟网络映射, 最大化虚拟拓扑连通, 割集和拥塞感知

Abstract: Network virtualization has been proposed as a promising way for running multiple customized virtual networks (VNs) on a shared infrastructure.However,how to provide reliable VN against substrate infrastructure failures has become an increasingly important issue.In this paper,we present a novel VN mapping scheme based on cutset and congestion awareness for the VN topology remain maximizing connected in the event of single substrate node failure.Simulation results show that algorithm can gain more optimal substrate long-term average revenue compared to the previous algorithms without reserving protection resource.

Key words: network virtualization, virtual network mapping, maximizing VN topology connected, cutset and congestion awareness

中图分类号: