[1] Adomavicius G,Tuzhilin A.Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extenstions[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749.
[2] Ricci F,Rokach L,Shapira B,et al.Recommender System Handbook[M].New York,USA:Springer,2011.
[3] Salakhutdinov R,Mnih A.Probabilistic matrix factorization[A].Proceedings of the 21st Annual Conference on Neural Information Processing Systems[C].Vancouver B C,Canada:ACM,2007.252-260.
[4] Deshpande M,Karypis G.Item-based top-n recommendation algorithms[J].ACM Transactions on Information Systems,2003,22(1):143-177.
[5] Koren Y.Factorization meets the neighborhood:a multifaceted collaborative filtering model[A].Proceedings of the 25th International Conference on Knowledge Discovery and Data Mining[C].Las Vegas:ACM,2008.426-434.
[6] Zhu X W,Ming Z Y,Hao Y,et al.Tackling data sparseness in recommendation using social media based topic hierarchy modeling[A].Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence[C].Buenos Aires,Argentina:ACM,2015.2415-2421.
[7] Li G,Ou W H.Pairwise probabilistic matrix factorization for implicit feedback collaborative filtering[J].Neurocomputing,2016,204:17-25.
[8] Li G,Wang L Y,Ou W H.Robust personalized ranking from implicit feedback[J].International Journal of Pattern Recognition and Artificial Intelligence,2015,30(1):1-28.
[9] Li G,Chen Q.Exploiting explicit and implicit feedbacks for personalized ranking[J].Mathematical Problems in Engineering,2016,2016:1-11.
[10] Liu T Y.Learning to Rank for Information Retrieval[M].Berlin:Springer,2011.
[11] Yao W L,He J,Huang G Y,et al.SoRank:Incorporating social information into learning to rank models for recommendation[A].Proceedings of the 23th ACM International Conference on World Wide Web[C].Seoul,Korea:ACM,2014.409-410.
[12] Weimer M,Karatzoglou A,Le Q V,et al.CofiRank-maximum margin matrix factorization for collaborative ranking[A].Proceedings of the 21th Conference on Advances in Neural Information Processing Systems[C].Vancouver B C,Canada:Curran Associates,Inc,2007.79-86.
[13] Liu N N,Yang Q.Eigenrank:a ranking-oriented approach to collaborative filtering[A].Proceedings of the 31th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval[C].Singapore:ACM Press,2008.83-90.
[14] Shi Y,Karatzoglou A,Baltrunas L,et al.xCLiMF:Optimizing expected reciprocal rank for data with multiple levels of relevance[A].Proceedings of the Sixth ACM Conference on Recommender Systems[C].Hongkong:ACM Press,2013.431-433.
[15] Liu N N,Zhao M,Yang Q.Probabilistic latent preference analysis for collaborative filtering[A].Proceedings of ACM International Conference on Information and Knowledge Management[C].Hong Kong,China:ACM,2009.759-766.
[16] Shi Y,Larson M,Hanjalic A.List-wise learning to rank with matrix factorization for collaborative filtering[A].Proceedings of the Fourth ACM Conference on Recommender Systems[C].New York,USA:ACM,2010.269-272.
[17] Shi Y,Larson M,Hanjalic A.Unifying rating-oriented and ranking-oriented collaborative filtering for improved recommendation[J].Information Sciences,2013,229(6):29-39. |