[1] Wang G,Hao J,Ma J,et al.A new approach to intrusion detection using artificial neural networks and fuzzy clustering[J].Expert Systems with Applications,2010,37(9):6225-6232.
[2] Lin W C,Ke S W,Tsai C F.CANN:An intrusion detection system based on combining cluster centers and nearest neighbors[J].Knowledge-Based Systems,2015,78:13-21.
[3] Hoz E D L,Hoz E D L,Ortiz A,et al.Feature selection by multi-objective optimisation:Application to network anomaly detection by hierarchical self-organising maps[J].Knowledge-Based Systems,2014,71:322-338.
[4] Vapnik V N.The nature of statistical learning theory[J].Neural Networks IEEE Transactions on,1995,10(5):988-999.
[5] 尚文利,张盛山,万明,等.基于PSO-SVM的Modbus TCP通讯的异常检测方法[J].电子学报,2014,11(42):2314-2320. Shang Wenli,Zhang Shengshan,Wang Ming,et al.Modbus/TCP communication anomaly detection algorithm based on PSO-SVM[J].Acta Electronica Sinica,2014,11(42):2314-2320.(in Chinese)
[6] Chitrakar R,Huang C.Selection of candidate support vectors in incremental SVM for network intrusion detection[J].Computers & Security,2014,45(3):231-241.
[7] Kuang F,Xu W,Zhang S,Wang Y.A novel approach of KPCA and SVM for intrusion detection[J].Journal of Computational Information Systems,2012,8(8):3237-3244.
[8] Kuang F,Xu W,Zhang S.A novel hybrid KPCA and SVM with GA model for intrusion detection[J].Applied Soft Computing,2014,18(4):178-184.
[9] Ahmad I,Abdullah A,Alghamdi A,et al.Optimized intrusion detection mechanism using soft computing techniques[J].Telecommunication Systems,2013,52(4):2187-2195.
[10] Lakhina S,Joseph S,Verma B.Feature reduction using principal component analysis for effective anomaly-based intrusion detection on NSL-KDD[J].International Journal of Engineering Science & Technology,2010,2(6):1790-1799.
[11] Hinton G E,Salakhutdinov R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(28):504-507.
[12] Hinton G E,Osindero S.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554.
[13] 余凯,贾磊,陈雨强,等.深度学习的昨天、今天和明天[J].计算机研究与发展,2013,50(9):1799-1804. Yu Kai,Jia Lei,Chen Yuqiang,et al.Deep learning:yesterday,today,and tomorrow[J].Journal of Computer Research and Development,2013,50(9):1799-1804.(in Chinese)
[14] Hinton G E.Training products of experts by minimizing contrastive divergence[J].Neural computation,2002,14(8):1771-1800.
[15] Rumelhart D E,Hinton G E,Williams R J.Learning representations by back-propagating errors[J].Nature,1986,323(6088):533-536.
[16] Stolfo S J,Fan W,Lee W K,et al.Cost-Based Modeling for Fraud and Intrusion Detection:Results from the JAM Project [EB/OL].http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html,2011-06-27.
[17] Chang C C.LIBSVM:a library for support vector machines[J].ACM Transactions on Intelligent Systems & Technology,2011,2(3):389-396.
[18] Larochelle H,Bengio Y,Louradour J,et al.Exploring strategies for training deep neural networks[J].Journal of Machine Learning Research,2009,10(6):1-40.
[19] Williams N,Sebastian Z,Armitage G.A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification[J].ACM SIGCOMM Computer Communication Review,2006,36(5):5-16. |