城市交通拥堵日益严重,高效的路径导航方法一直是当前研究的热点和缓解拥堵的主要途径.现有的研究成果主要集中在对单个车辆行驶时间的路径寻优和小规模路网的多车辆均衡化的路径导航,没有实现大规模多车辆多路径的实时动态路径导航.当前研究主要存在以下局限:(1)导航方案评价指标单一,不能充分表示导航方案的优劣;(2)无法实现大规模路网的实时导航.针对这些问题,本文提出一种城市交通路网实时动态多路口路径导航量子搜索方法(A Route Guidance Method based on Quantum Searching for Real-time Dynamic Multi-intersections in Urban Traffic Networks,RGQS),该方法充分考虑各种因素,实时提供大规模路网的路径导航.本文的实验分别在人工路网和真实路网中验证了RGQS方法相比于对比算法可以使行驶时间减少达到20%.
Abstract
Traffic congestion is more and more serious. Efficient route guidance has been the main way to relieve congestion. The existing research results mainly concentrate on optimizing single vehicle routing or multi-vehicles route guidance with small traffic network scale. There is no real-time and dynamic route guidance for large-scale multi-vehicles and multi-intersections. The current studies mainly have the following limitations: (1) the need for an appropriate metric or factor for the evaluation a route guidance project; (2) access to real-time route guidance for multiple vehicles in large scale multiple intersection urban networks. In view of the above problems, this paper proposes a route guidance quantum searching (RGQS) method for real-time dynamic multi-intersections in urban traffic network, which takes full account of various factors and provides real-time route guidance to avoid local congestion. The extensive experiments show that the RGQS method can reduce the traveling time by 20% compared with the comparison algorithms in the artificial road network and the real road network, respectively.
关键词
交通拥堵 /
路径导航 /
多路口 /
效用值 /
量子搜索
{{custom_keyword}} /
Key words
traffic congestion /
route guidance /
multi-intersection /
utility value /
quantum search
{{custom_keyword}} /
中图分类号:
TP391
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Benioff Paul.The computer as a physical system:a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines[J].Journal of Statistical Physics,1980,22(5):563-591.
[2] Grover L K.A fast quantum mechanical algorithm for database search[A].Proceedings of the 28th Annual ACM Symposium on the Theory of Computing[C].Philadelphia:ACM,1996.212-219.
[3] Zalka C.Grover quantum searching algorithm is optimal[J].Physical Review A,1999,60(4):2746-2751.
[4] Tang Yi,Su Sheng-hui.Application of Grover's quantum search algorithm to solve the transcendental logarithm problem[A].Proceedings of the Tenth International Conference on Computational Intelligence and Security (CIS)[C].Kunming:CIS,2014.445-449.
[5] Wang Hui-quan,Wu Jun-jie,Yang Xue-jun,Chen Ping-xing,Yi Xun.An enhanced quantum pagerank algorithm integrated with quantum search[A].Proceedings of the Eighth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS)[C].Birmingham:IMIS,2014.74-81.
[6] Varga T,Bacsardi L.Efficient simulation of quantum-based searching[A].Proceedings of the 22nd International Conference on Software,Telecommunications and Computer Networks (SoftCOM)[C].Split:SoftCOM,2014.403-407.
[7] Campigotto Paolo,Rudloff Christian,Leodolter Maximilian,Bauer Dietmar.Personalized and situation-aware multimodal route recommendations:The FAVOUR algorithm[J].IEEE Transactions on Intelligent Transportation Systems,2017,18(1):92-102.
[8] Zhang Xi-peng,et al.A design of intelligent route guidance system based on shortest path algorithm[A].Proceedings of the IEEE International Conference on Service Operations And Logistics,And Informatics (SOLI)[C].Hammamet:SOLI,2015.12-17.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金 (No.61572369,No.61711530238); 湖北省自然科学基金 (No.2015CFB423); 武汉市重大科技计划项目 (No.2015010101010023)
{{custom_fund}}