[1] 童庆禧,张兵,郑兰芬.高光谱遥感:原理、技术与应用[M].北京:高等教育出版社,2006.166-238. TONG Qing-xi,ZHANG Bing,ZHENG Lan-fen.Hyperspectral Remote Sensing[M].Beijing:Higher Education Press,2006.166-238.(in Chinese)
[2] 吴泽彬,韦志辉,孙乐,等.基于迭代加权L1正则化的高光谱混合像元分解[J].南京理工大学学报,2011,35(4):431-435. WU Ze-Bin,WEI Zhi-hui,SUN Le,et al.Hyperspectral unmixing based on iterative weighted L1 regularization[J].Journal of Nanjing University of Science and Technology,2011,35(4):431-435.(in Chinese)
[3] 宋相法,焦李成.基于稀疏表示及光谱信息的高光谱遥感图像分类[J].电子与信息学报,2012,34(2):268-272. SONG Xiang-fa,JIAO Li-cheng.Classification of hyperspectral remote sensing image based on sparse representation and spectral information[J].Journal of Electronics and Information Technology,2012,34(2):268-272.(in Chinese)
[4] DU Bo,ZHANG Liang-pei.Random-selection-based anomaly detector for hyperspectral imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(5):1578-1589.
[5] MELGANI F,BRUZZONE L.Classification of hyperspectral remote sensing images with support vector machines[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(8):1778-1790.
[6] BOHNING D.Multinomial logistic regression algorithm[J].Annals of the Institute of Statistical Mathematics,1992,44(1):197-200.
[7] CHEN Y,NASRABADI N M,TRAN T D.Hyperspectral image classification using dictionary based sparse representation[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(10):3973-3985.
[8] KRISHNAPURAM B,CARIN L,FIGUEIREDO M A T,Hartemink A J.Sparse multinomial logistic regression:fast algorithms and generalization bounds[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(6):957-968.
[9] BIOUCAS-DIAS J M,FIGUEIREDO M.Logistic regression via variable splitting and augmented lagrangian tools[R].Instituto Superior T'ecnico,TULisbon,2009.
[10] 孙乐,吴泽彬,冯灿,等.一种新的两分类器融合的空谱联合高光谱分类方法[J].电子学报,2015,43(11):2210-2217. SUN L,WU Ze-bin,FENG Can,et al.A novel two-classifier fusion method for spectral-spatial hyperspectral classification[J].Acta Electronica Sinica,2015,43(11):2210-2217.(in Chinese)
[11] GURRAM P,KWON H.Contextual SVM Using Hilbert Space Embedding for Hyperspectral Classification[J].IEEE Geoscience and Remote Sensing Letters,2013,10(5):1031-1035.
[12] 倪鼎,马洪兵.基于近邻协同的高光谱图像谱-空联合分类[J].自动化学报,2015,41(2):273-284. NI Ding,MA Hong-bing.Spectral-spatial classification of hyperspectral images based on neighborhood collaboration[J].Acta Automatica Sinica,2015,41(2):273-284.(in Chinese)
[13] CAMPS-VALLS G,GOMEZ-CHOVA L,MUNOZ-MARI J,et al.Composite kernels for hyperspectral image classification[J].IEEE Geoscience & Remote Sensing Letters,2006,3(1):93-97.
[14] DU Bo,ZHANG Liang-pei,ZHANG Le-fei,et al.A discriminative manifold learning based dimension reduction method for hyperspectral classification[J].International Journal of Fuzzy Systems,2012,14(2):272-277.
[15] SHI Qian,ZHANG Liang-pei,DU Bo.Semisupervised discriminative locally enhanced alignment for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(9):4800-4815.
[16] HUANG Xin,LU Qi-kai,ZHANG Liang-pei,et al.New postprocessing methods for remote sensing image classification:a systematic study[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(11):7140-7159.
[17] TARABALKA Y,FAUVEL M,CHANUSSOT J,et al.SVM-and MRF-based method for accurate classification of hyperspectral images[J].IEEE Geoscience and Remote Sensing Letters,2010,7(4):736-740.
[18] LI J,BIOUCAS-DIAS J M,PLAZA A.Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(11):4085-4098.
[19] LI J,BIOUCAS-DIAS J M,PLAZA A.Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(3):809-823.
[20] ZHANG Bing,LI Shan-shan,JIA Xiu-ping,et al.Adaptive Markov random field approach for classification of hyperspectral imagery[J].IEEE Geoscience and Remote Sensing Letters,2011,8(5):973-977.
[21] SUN Le,WU Ze-bin,LIU Jian-jun,et al.Supervised spectral-spatial hyperspectral image classification with weighted Markov random fields[J].IEEE Transactions on Geoscience and Remote Sensing,2014,53(3):1490-1503.
[22] IORDACHE M D,BIOUCAS-DIAS J M,PLAZA A.Total variation spatial regularization for sparse hyperspectral unmixing[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(11):4484-4502.
[23] ESSER E.Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman[R].CAM Report,2009.
[24] GOLDSTEIN T,OSHER S.The split bregman method for L1-regularized problems[J].SIAM Journal on Imaging Sciences,2009,2(2):323-343.
[25] WU Chun-lin,TAI Xue-cheng.Augmented Lagrangian method,dual methods,and split Bregman iteration for ROF,vectorial TV,and high order models[J].SIAM Journal on Imaging Sciences,2010,3(3):300-339.
[26] IORDACHE M D,BIOUCAS-DIAS J M,PLAZA A.Total variation spatial regularization for sparse hyperspectral unmixing[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(11):4484-4502.
[27] CHEN Y,NASRABADI N M,TRAN T D.Hyperspectral image classification via kernel sparse representation[A].Processing of International Conference on Image Processing[C].Brussels,Belgium:IEEE Computer Society,2011.1233-1236.
[28] LI J,BIOUCAS-DIAS J M,PLAZA A.Exploiting spatial information in semi-supervised hyperspectral image segmentation[A].Proceedings of Hyperspectral Image and Signal Processing:Evolution in Remote Sensing[C].Reykjavik,Iceland:GRSS,2010.1-4.
[29] DU B,WANG Z,ZHANG L,et al.Exploring representativeness and informativeness for active learning[J].IEEE Transactions on Cybernetics,2017,47(1):14-26. |