[1] Bejani M,Gharavian D,Charkari N M.Audiovisual emotion recognition using ANOVA feature selection method and multi-classifier neural networks[J].Neural Computing and Applications,2014,24(2):399-412.
[2] Huang Z H,Li W J,Wang J,et al.Face recognition based on pixel-level and feature-level fusion of the top-level's wavelet sub-bands[J].Information Fusion,2015,22:95-104.
[3] Eleftheriadis S,Rudovic O,Pantic M.Discriminative shared Gaussian processes for multiview and view-invariant facial expression recognition[J].IEEE Transactions on Image Processing,2014,24(1):189-204.
[4] Cho S B,Kim J H.Combining multiple neural network by fuzzy integral for robust classification[J].IEEE Transactions on Systems Man & Cybernetics,1995,25(2):380-384.
[5] Kwak K C,Pedrycz W.Face recognition:A study in information fusion using fuzzy integral[J].Pattern Recognition Letters,2005,26(6):719-733.
[6] Claudio De Stefano,Ciro D'elia,et al.Classifier combination by Bayesian networks for handwriting recognition[J].International Journal of Pattern Recognition & Artificial Intelligence,2009,23(5):887-905.
[7] Guo K,Li W.Combination rule of D-S evidence theory based on the strategy of cross merging between evidences[J].Expert Systems with Applications,2011,38(10):13360-13366.
[8] 林剑,鲍光淑,王润生,等.基于模糊密度分解的遥感图像光谱和纹理信息的融合[J].电子学报,2004,32(12):2028-2030. Lin Jian,Bao Guangshu,Wang Yusheng,et,al.Fusion spectrum and texture information of RS image based on decomposing fuzzy density[J].Acta Electronica Sinica,2004,32(12):2028-2030.(in Chinese)
[9] 孔志周,蔡自兴,官东.两种模糊密度确定方法的实验比较[J].小型微型计算机系统,2009,30(2):283-288. Kong Zhizhou,Cai Zixing,Guan Dong.Empirical comparison of two methods for fuzzy density[J].Journal of Chinese Computer Systems,2009,30(2):283-288.(in Chinese)
[10] 刘汝杰,袁保宗,唐晓芳.用遗传算法实现模糊测度赋值的一种多分类器融合算法[J].电子学报,2002,30(1):145-147. Liu Rujie,Yuan Baozong,Tang Xiaofang.Multiple classifiers fusion algorithm with the fuzzy measures determined by genetic algorithm[J].Acta Electronica Sinica,2002,30(1):145-147.(in Chinese)
[11] 付耀文,黎湘,庄钊文.一种自适应模糊密度赋值的决策层融合目标识别算法[J].电子学报,2004,32(9):1433-1435. Fu Yaowen,Li Xiang,Zhuang Zhaowen.A decision level fusion algorithm for target recognition with fuzzy densities determined adaptively[J].Acta Electronica Sinica,2004,32(9):1433-1435.(in Chinese)
[12] 邢清华,刘付显.一种基于模糊密度动态调节的融合目标识别方法[J].控制与决策,2009,24(5):777-780. Xing Qinghua,Liu Fuxian.Method of fusion target recognition based on fuzzy densities dynamic adjusted[J].Control and Decision,2009,24(5):777-780.(in Chinese)
[13] 孔志周.多分类器系统中信息融合方法研究[D].中南大学,2011. Kong Zhizhou.Study of information fusion methods in multiple classifier system[D].Central South University,2011.(in Chinese)
[14] 詹永照,张娟,毛启容.基于可分度和支持度的模糊密度赋值融合识别算法[J].模式识别与人工智能,2012,25(2):346-351. Zhan Yongzhao,Zhang Juan,Mao Qirong.Fusion recognition algorithm based on fuzzy density determination with classification capability and supportability[J].PR&AI,2012,25(2):346-351.(in Chinese)
[15] 陈鼎新,陆文凯,刘代志.向量距离中角度信息对时空Kriging的影响[J].清华大学学报(自然科学版),2016,56(5):553-557. Chen Dingxin,Lu Wencai,Liu Dai-zhi.Vector distance direction information for spatio-temporal Kriging[J].J Tsinghua Univ(Sci&Technol),2016,56(5):553-557.(in Chinese)
[16] 印勇,李荣岗,王建东,等.人脸表情识别的Gabor变换最优通道模糊融合方法[J].重庆大学学报,2010,33(7):97-101. Yin Yong,Li Ronggang,Wang Jian-Dong,et al.A fuzzy fusion approach to gabor transform optimal channels for facial expression recognition[J].Journal of Chongqing University,2010,33(7):97-101.(in Chinese)
[17] Gu W,Xiang C,Venkatesh Y V,et al.Facial expression recognition using radial encoding of local Gabor features and classifier synthesis[J].Pattern Recognition,2012,45(1):80-91.
[18] Wang L,Wang K,Li R.Unsupervised feature selection based on spectral regression from manifold learning for facial expression recognition[J].Iet Computer Vision,2015,9(5):655-662.
[19] Lv Y,Feng Z,Xu C.Facial expression recognition via deep learning[A].International Conference on Smart Computing[C].IEEE,2014.303-308.
[20] 胡敏,江河,王晓华,等.基于几何和纹理特征的表情层级分类方法[J].电子学报,2017,45(1):164-172. Hu Min,Jiang He,Wang Xiaohua,et al.A hierarchical classification method of expressions based on geometric and texture features[J].Acta Electronica Sinica,2017,45(1):164-172.(in Chinese)
[21] Zhang W,Zhang Y,Ma L,et al.Multimodal learning for facial expression recognition[J].Pattern Recognition,2015,48(10):3191-3202.
[22] Yang M,Zhang L,Zhang L,et al.Monogenic Binary Pattern (MBP):A Novel Feature Extraction and Representation Model for Face Recognition[A].International Conference on Pattern Recognition[C].IEEE Computer Society,2010.2680-2683.
[23] Hu M,Huang X,Wang X,et al.Adaptive facial expression recognition method based on MBP and HMOG feature[A].International Conference on Cloud Computing and Intelligence Systems[C].IEEE,2014.
[24] 黄晓音.基于单演示波和稀疏表示的人脸表情识别方法[D].合肥工业大学,2016. Huang Xiaoyin.Facial expression recognition method based on monogenic wave and sparse representation[D].Hefei University of Technology,2016.(in Chinese)
[25] Qin W,Fang Q,Yang Y.A facial expression recognition method based on singular value features and improved bp neural network[J].Communications in Computer & Information Science,2013,363:163-172.
[26] Khanum A,Mufti M,Javed M Y,et al.Fuzzy case-based reasoning for facial expression recognition[J].Fuzzy sets and systems,2009,160(2):231-250. |