基于广义布尔函数的理论研究,利用广义Walsh-Hadamard变换、相关函数以及平方和指标,分析了一类广义布尔函数的相关函数关系,得到这类广义布尔函数互相关函数以及自相关函数的关系;基于所得结果,利用自相关函数证明了一类广义Bent函数与Bent函数之间的关系.最后,给出一类广义布尔函数的平方和指标关系.
Abstract
Based on the theoretical study of the generalized Boolean functions. The correlation functions of a class of generalized Boolean functions are analyzed by using generalized Walsh-Hadamard transform,correlation functions and sum-of-squares and indicator, and the relationship between correlation functions and auto-correlation functions of such generalized Boolean functions are obtained. Based on the results obtained, the relationship between a class of generalized Bent functions and Bent functions is proved by using auto-correlation functions. Finally, the relationship between sum-of-squares and indicator of a class of generalized Boolean functions is given.
关键词
广义布尔函数 /
相关函数 /
Bent函数 /
平方和指标 /
广义Walsh-Hadamard变换
{{custom_keyword}} /
Key words
generalized Boolean functions /
correlation functions /
Bent functions /
sum-of-squares and indicator /
generalized Walsh-Hadamard transform
{{custom_keyword}} /
中图分类号:
TN918.1
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CUSICK T W,STANICA P.Cryptographic Boolean Functions and Applications[M].USA:Elsevier Academic Press,2009.86-100.
[2] Chen L,Liu J.On nonlinearity of S-Boxes and their related binary codes[J].Chinese Journal of Electronics,2016,25(1):167-173.
[3] SCHMIDT K.Quaternary constant-amplitude codes for multi-code CDMA[J].IEEE Transactions on Information Theory,2009,55(4):1824-1832.
[4] SCHMIDT K.Z4-valued quadratic forms and quaternary sequence families[J].IEEE Transactions on Information Theory 2009,55(12):5803-5810.
[5] 张卫国,肖国镇.具有偶数个变元的高非线性度平衡布尔函数的构造[J].电子学报,2011,39(03):727-728. ZHANG W G,XIAO G Z.Construction of highly nonlinear balanced boolean functions with even number of Arguments[J].Acta Electronica Sinica,2011,39(03):727-728.(in Chinese)
[6] 杨小龙,胡红钢.Bent函数的构造方法研究[J].密码学报,2015,2(5):404-438. YANG X L,HU H G.A survey of constructions on Bent functions[J].Journal of Cryptologic Research,2015,2(5):404-438.(in Chinese)
[7] TOKAREVA N N.Generalizations of Bent functions A surver[J].Journal of Applied and Industrial Mathematics,2011,5(1):110-129.
[8] STANICA P,GANGOPADHYAY S,SINGH B K.Some results concerning generalized bent functions[EB/OL].http://eprint.iacr.org/2011/290,2019-03-02.
[9] Zhuo Z P,Chong J F,Wei S M.Some properties correlation functions on generalized Boolean functions[J].Chinese Journal of Electronics,2015,24(1):166-169.
[10] SOLE P,TOKAREVA N.Connections between quaternary and binary Bent functions[EB/OL].http://eprint.icar.org/2009/544,2019-03-04.
[11] STANICA P,MARTINSEN T,GANGOPADHYAY S,et al.Bent and generalized Bent Boolean functions[J].Designs Codes and Cryptography,2013,69(1):77-94.
[12] Zhuo Z P.On cross correlation properties of boolean functions[J].International Journal of Computer Mathematics, 2011,88(10):2035-2014.
[13] Zhou Y.Characterization of a balanced Boolean function with the minimum of the sum-of-square indicator[J].Journal of Cryptologic Research,2015,2(1):17-26.
[14] Zhang F R,Xia S X,STANICA P,Zhou Y.Further results on constructions of generalized bent Boolean functions[J].Science China Information Sciences,2016,59(5):1-3.
[15] Zhang F R,PASALIC E,Wei Y Z.Construction Bent functions outside the Maiorana-McFarland class using a general form of rothaus[J].IEEE Transactions on Information Theory,2017,63(8):5336-5349.
[16] SINGH B K.Secondary constructions on generalized Bent functions[EB/OL].Available at http://eprint.icar.org/2012/017,2019-03-09.
[17] Zhang F R,PASALIC E,Wei Y Z.Large sets of disjoint spectra plateaued functions inequivalent to partially linear functions[J].IEEE Transactions on Information Theory,2018,64(4):2987-2999.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金 (No.60573026,No.10101008); 安徽省自然科学基金 (No.1608085MF143); 安徽高校省级自然科学研究重点项目 (No.KJ2018A0678); 淮北师范大学研究生创新基金 (No.ycx201901008)
{{custom_fund}}