[1] 高妮,高岭,等.基于自编码网络特征降维的轻量级入侵检测模型[J].电子学报,2017,45(3):730-739. GAO Ni,GAO Ling,et al.A lightweight intrusion detection model based on autoencoder network with feature reduction[J].Acta Electronica Sinica,2017,45(3):730-739.(in Chinese)
[2] HAMAMOTO A H,SAMPAIO L D H,ABR O T,et al.Network anomaly detection system using genetic algorithm and fuzzy logic[J].Expert Systems with Applications,2018,92(1):309-402.
[3] 李立勋,张斌,董书琴,等.基于脆弱性变换的网络动态防御有效性分析方法[J].电子学报,2018,46(12):3014-3020. LI Li-xun,ZHANGBin,DONG Shu-qin,et al.Effectiveness analysis approach based on vulnerability mutation for network dynamic defense[J].Acta Electronica Sincia,2018,46(12):3014-3020.(in Chinese)
[4] SULTANA N,CHILAMKURTI N,PENG W,et al.Survey on SDN based network intrusion detection system using machine learning approaches[J].Peer-to-Peer Networking and Applications,2018,11(1-2):1-9.
[5] CHITRAKAR R,HUANG C.Selection of candidate support vectors in incremental SVM for network intrusion detection[J].Computers & Security,2014,45(3):231-241.
[6] WANG C R,XU R F,LEE S J,et al.Network intrusion detection using equality constrained-optimization-based extreme learning machines[J].Knowledge-Based Systems,2018,147(1):68-80.
[7] SONG Y,YAO S,et al.A new k-ary crisp decision tree induction with continuous valued attributes[J].Chinese Journal of Electronics,2017,26(5):999-1007.
[8] SHEN Y,ZHENG K,WU C,et al.An ensemble method based on selection using bat algorithm for intrusion detection[J].Computer Journal,2018,61(4):526-538.
[9] MA T,WANG F,CHENG J,et al.A hybrid spectral clustering and deep neural network ensemble algorithm for intrusion detection in sensor networks[J].Sensors,2016,16(10):1701.
[10] LIU J,HE J,ZHANG W,et al.TCvBsISM:Texture classification via B-splines-based image statistical modeling[J].IEEE Access,2018,6(1):44876-44893.
[11] LI S,SONG S,HUANG G,et al.Cross-domain extreme learning machines for domain adaptation[J].IEEE Transactions on Systems Man & Cybernetics Systems,2018,PP(99):1-14.
[12] HUANG G B.What are extreme learning machines? filling the gap between Frank Rosenblatt's dream and John Von Neumann's puzzle[J].Cognitive Computation,2015,7(3):263-278.
[13] HUANG G,HUANG G B,SONG S,et al.Trends in extreme learning machines:a review[J].Neural Networks,2015,61(C):32-48.
[14] HUANG J,YU Z L,CAI Z,et al.Extreme learning machine with multi-scale local receptive fields for texture classification[J].Multidimensional Systems and Signal Processing,2017,28(3):995-1011.
[15] LIANG N Y,HUANG G B,SARATCHANDRAN P,et al.A fast and accurate online sequential learning algorithm for feedforward networks[J].IEEE Trans Neural Netw,2006,17(6):1411-1423.
[16] 杨乐,杨磊.基于核函数的在线序列ELM模型[J].纺织高校基础科学学报,2013,26(4):516-520. YANG Le,et al.Online sequence ELM model based on the kernel function[J].Basic Science Journal of Textile Universities,2013,26(4):516-520.(in Chinese)
[17] MA G,WANG Y,WU L.Subspace ensemble learning via totally-corrective boosting for gait recognition[J].Neurocomputing,2016,224(1):119-127.
[18] ERDAL H,KARAHANOÉLUB Í.Bagging ensemble models for bank profitability:an emprical research on Turkish development and investment banks[J].Applied Soft Computing,2016,49(1):861-867.
[19] DRUCKER H,CORTES C,JACKEL L D,et al.Boosting and other ensemble methods[J].Neural Computation,1994,6(6):1289-1301.
[20] ZHOU Z,CHEN J,SONG Y,et al.RFSEN-ELM:Selective ensemble of extreme learning machines using rotation forest for image classification[J].Neural Network World,2017,27(5):499-517.
[21] ZHOU Z H,WU J,TANG W.Ensembling neural networks:many could be better than all[J].Artificial Intelligence,2002,137(1-2):239:263.
[22] MARTINEZMUOZ G,HERNANDEZLOBATO D,SUAREZ A.An Analysis of ensemble pruning techniques based on ordered aggregation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2009,31(2):245-259.
[23] MART NEZ-MU OZ G,SU REZ A.Aggregation ordering in bagging[OL].http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.146.3650.2004.
[24] DAVIS J J,CLARK A J.Data preprocessing for anomaly based network intrusion detection:A review[J].Computers & Security,2011,30(6):353-375.
[25] HASAN M A M,NASSER M,PAL B,et al.Support vector machine and random forest modeling for intrusion detection system (IDS)[J].Journal of Intelligent Learning Systems & Applications,2014,6(1):45-52.
[26] KOC L,MAZZUCHI T A,SARKANI S.A network intrusion detection system based on a Hidden Naïve Bayes multiclass classifier[J].Expert Systems with Applications,2012,39(18):13492-13500.
[27] HU J,MIN J.Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model[J].Cognitive Neurodynamics,2018,12(12):1-10.
[28] Duan Q,Al-Shaer E.Traffic-aware dynamic firewall policy management:techniques and applications[J].IEEE Communications Magazine,2013,51(7):73-79. |