参数化协方差矩阵估计(Parametric Covariance Matrix Estimation,PCE)方法利用雷达系统参数估计杂波协方差矩阵(Clutter Covariance Matrix,CCM),显著提升非均匀环境下空时自适应处理(Space-Time Adaptive Processing,STAP)的性能;但是在系统参数和杂波分布存在误差情况下,性能下降严重.本文提出一种稳健的基于PCE方法的STAP杂波抑制方法.首先利用稀疏恢复方法与Radon变换估计杂波分布,然后提出一种归一化广义内积统计量修正杂波的分布,最后利用PCE方法估计CCM并进行STAP杂波抑制.通过分析舰载高频地波雷达仿真和实测数据处理结果表明:所提方法的稳健性大幅提升,相比稀疏恢复STAP方法和前后向空时平滑STAP方法滤波器凹口更加准确且更深,在有效抑制杂波的同时更利于慢速目标的检测.
Abstract
The parametric covariance matrix estimation (PCE) method uses the system parameters to estimate the clutter covariance matrix (CCM). It can greatly improve the performance of space-time adaptive processing (STAP) in nonhomogeneous environment. However, the performance of PCE method is seriously degraded when the system parameter information or clutter distribution is in error. This paper presents a robust parametric covariance matrix estimation based STAP method. First the clutter distribution is estimated by the sparse recovery (SR) and Radon transform. Then a normalized generalized inner product statistic (N-GIP) is proposed to modify the clutter distribution parameters. Finally, the PCE method is utilized to estimate the CCM and the STAP is used to suppress clutter. The simulation experiments and measured data processing results show that the robustness of the proposed method is greatly improved. Compared with the sparse recovery STAP (SR STAP) and forward/backward smoothing STAP (F/B STAP), the filter notches are more accurate and deeper. This benefits the detection of slow targets.
关键词
高频雷达 /
杂波抑制 /
空时自适应处理 /
稀疏恢复 /
Radon变换 /
参数估计
{{custom_keyword}} /
Key words
high frequency radar /
clutter suppression /
space-time adaptive processing /
sparse recovery /
Radon transform /
parameter estimation
{{custom_keyword}} /
中图分类号:
TN958
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 谢俊好,许荣庆.高频地波舰载超视距雷达中的空时处理[J].系统工程与电子技术,1998,20(2):30-36. Xie J,Xu R.Space-time processing for high frequency surface-wave shipborne over-the-horizon radar[J].Systems Engineering and Electronics,1998,20(2):30-36.(in Chinese)
[2] Melvin W L.Space-time adaptive radar performance in heterogeneous clutter[J].IEEE Transactions on Aerospace and Electronic Systems,2000,36(2):621-633.
[3] Wang Y L,Chen J W,Bao Z,et al.Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(1):70-81.
[4] Guerci J R,Goldstein J S,Reed I S.Optimal and adaptive reduced-rank STAP[J].IEEE Transactions on Aerospace and Electronic Systems,2000,36(2):647-663.
[5] Cristallini D,Burger W.A robust direct data domain approach for STAP[J].IEEE Transactions on Signal Processing,2012,60(3):1283-1294.
[6] Zhu Y,Wei Y,Zhu K.Sea clutter suppression for shipborne HFSWR using joint sparse recovery-based STAP[J].Electronics Letters,2016,52(12):1067-1069.
[7] 孙珂.非均匀杂波环境下基于稀疏恢复的STAP技术研究[D].北京:清华大学,2011. SUN K.STAP Technique Using Sparse Recovery in Heterogeneous Clutter Scenario[D].Beijing:Tsinghua University,2011.
[8] 阳召成.基于稀疏性的空时自适应处理理论和方法[D].长沙:国防科学技术大学,2013. YANG Z C.Theory and Methods of Sparsity-Based Space-Time Adaptive Processing[D].Changsha:National University of Defense Technology,2013.
[9] Wang Z,Wang Y,Duan K,et al.Subspace-augmented clutter suppression technique for STAP radar[J].IEEE Geoscience and Remote Sensing Letters,2016,13(3):1-5.
[10] 马泽强,王希勤,刘一民,等.基于稀疏恢复的空时二维自适应处理技术研究现状[J].雷达学报,2014,3(2):217-228. Ma Z Q,Wang X Q,Liu Y M,et al.An overview on sparse recovery-based STAP[J].Journal of Radars,2014,3(2):217-228.
[11] Melvin W L,Showman G A.An approach to knowledge-aided covariance estimation[J].IEEE Transactions on Aerospace and Electronic Systems,2006,42(3):1021-1042.
[12] Xie J,Yuan Y,Liu Y.Experimental analysis of sea clutter in shipborne HFSWR[J].IEE Proceedings-Radar,Sonar and Navigation,2001,148(2):67-71.
[13] Barrick D,Snider J.The statistics of HF sea-echo Doppler spectra[J].IEEE Journal of Oceanic Engineering,1977,25(2):19-28.
[14] KlemmR.Principles of Space-Time Adaptive Processing[M].London UK:The Institute of Engineering and Technology,2006.121-127
[15] Reed I S,Mallett J D,Brennan L E.Rapid convergence rate in adaptive arrays[J].IEEE Transactions on Aerospace and Electronic Systems,1974,AES-10(6):853-863.
[16] Nilubol C,Mersereau R M,Smith M.A SAR target classifier using Radon transforms and hidden Markov models[J].Digital Signal Processing,2002,12(2):274-283.
[17] Xie J,Wang Z,Ji Z,et al.High-resolution ocean clutter spectrum estimation for shipborne HFSWR using sparse-representation based MUSIC[J].IEEE Journal of Oceanic Engineering,2015,40(3):546-557.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金重点项目 (No.61831010); 黑龙江省科学基金项目 (No.JQ2019F001)
{{custom_fund}}