电子学报 ›› 2020, Vol. 48 ›› Issue (10): 2060-2070.DOI: 10.3969/j.issn.0372-2112.2020.10.025

• 科研通信 • 上一篇    下一篇

自适应掩膜信号集成局部特征尺度分解及其应用

郑近德1, 潘海洋1, 童靳于1, 刘庆运1, 丁克勤2   

  1. 1. 安徽工业大学机械工程学院, 安徽马鞍山 243032;
    2. 中国特种设备检测研究院, 北京 100029
  • 收稿日期:2019-05-05 修回日期:2020-04-30 出版日期:2020-10-25
    • 作者简介:
    • 郑近德 男,1986年生于安徽阜阳.博士,现为安徽工业大学机械工程学院副教授.研究方向为动态信号处理、时频分析及机械设备故障诊断,已发表学术论文40余篇.E-mail:lqdlzheng@126.com
      潘海洋 男,1989年生于安徽宿州.硕士,现为安徽工业大学机械工程学院助教.研究方向为模式识别与机械设备故障诊断.E-mail:pansea@sina.cn
      童靳于 女,1987年生于安徽淮南.硕士,现为安徽工业大学机械工程学院实验师.研究方向为统计信号处理、振动信号分析与测量.E-mail:pantc2006@163.com
    • 基金资助:
    • 国家重点研发计划 (No.2017YFC0805100); 国家自然科学基金 (No.51975004); 安徽省高校自然科学研究重点项目 (No.KJ2019A0053,No.KJ2019A092)

Adaptive Mask Signal-Based Local Characteristic-Scale Decomposition and Its Application

ZHENG Jin-de1, PAN Hai-yang1, TONG Jin-yu1, LIU Qing-yun1, DING Ke-qin2   

  1. 1. School of Mechanical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China;
    2. China Special Equipment Inspection and Research Institute, Beijing 100029, China
  • Received:2019-05-05 Revised:2020-04-30 Online:2020-10-25 Published:2020-10-25
    • Supported by:
    • National Key Research and Development Program of China (No.2017YFC0805100); National Natural Science Foundation of China (No.51975004); Key Program of Natural Science Research Projrct of Colleges and Universities of Anhui Province (No.KJ2019A0053, No.KJ2019A092)

摘要: 局部特征尺度分解(LCD)是为克服经验模态分解(EMD)中均值曲线构造的不足而提出的一种自适应信号分解方法,已被应用于机械故障诊断领域.但LCD存在与EMD类似的模态混叠问题,为此,基于均匀相位差掩膜信号构造,提出了自适应掩膜信号集成局部特征尺度分解(AMSELCD),该方法不仅能够将一个复杂信号自适应地分解为若干个本征模态函数和一个剩余项之和,而且能够有效地解决LCD的模态混叠现象.通过仿真信号分析,将AMSELCD与现有多种抑制模态分解方法进行了对比,结果表明了所提方法的有效性和优越性.最后,针对滚动轴承和转子碰摩故障振动信号的调制特征,将所提AMSELCD方法应用于转子碰摩和滚动轴承的故障诊断,对比和实验分析结果进一步验证了所提方法的有效性和优越性.

关键词: 经验模态分解, 局部特征尺度分解, 总体平均经验模态分解, 模态混叠, 故障诊断

Abstract: Local characteristic-scale decomposition (LCD) is an adaptive signal decomposition method proposed to overcome the shortcomings of mean curve construction in empirical mode decomposition (EMD) and has been applied to mechanical fault diagnosis. However, LCD also has the mode mixing problem that exists in EMD. Based on the construction of masking signal with uniform phase difference, the adaptive mask signal ensemble local characteristic-scale decomposition (AMSELCD) is proposed in this paper to adaptively decompose a complex signal into several intrinsic mode functions and a residue, which can effectively alleviate the mode mixing phenomenon of LCD. AMSELCD is compared with various existing methods for restraining mode mixing through simulation signal analysis and the results show the effectiveness and superiority of the proposed method. Finally, aiming at the modulation characteristics of fault signals of rolling bearing and rotor rubbing, the proposed AMSELCD method is applied to the fault diagnosis of rotor rubbing and rolling bearing, and the experimental comparison analysis results further verify the effectiveness and superiority of AMSELCD.

Key words: empirical mode decomposition, local characteristic-scale decomposition, ensemble empirical mode decomposition, mode mixing, fault diagnosis

中图分类号: