[1] 张良培,张立福.高光谱遥感[M].武汉:武汉大学出版社,2005. Zhang L P,Zhang L F.Hyperspectral Remote Sensing[M].Wuhan:Wuhan University Press,2005.(in Chinese)
[2] 陈允杰,马辰阳,孙乐,詹天明.基于边缘修正的高光谱图像超像素空谱核分类方法[J].电子学报,2019,47(1):73-81. Chen Y J,Ma C Y,Sun L,Zhan T M.Edge-modified superpixel based spectral-spatial kernel method for hyperspectral image classification[J].Acta Electronica Sinica,2019,47(1):73-81.(in Chinese)
[3] Tong Q X,Xue Y Q,Zhang L F.Progress in hyperspectral remote sensing science and technology in China over the past three decades[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(1):70-91.
[4] Keshava N,Mustard J F.Spectral unmixing[J].IEEE Signal Processing Magazine,2002,19(1):44-57.
[5] 刘建军,吴泽彬,韦志辉,肖亮,孙乐.基于约束非负矩阵分解的高光谱图像解混快速算法[J].电子学报,2013,41(3):432-437. Liu J J,Wu Z B,Wei Z H,Xiao L,Sun L.A fast algorithm for hyperspectral unmixing based on constrained nonnegative matrix factorization[J].Acta Electronica Sinica,2013,41(3):432-437.(in Chinese)
[6] Ma W K,Bioucas-Dias J M,Chan T H,et al.A signal processing perspective on hyperspectral unmixing:Insights from remote sensing[J].IEEE Signal Processing Magazine,2014,31(1):67-81.
[7] 陈雷,郭艳菊,葛宝臻.基于微分搜索的高光谱图像非线性解混算法[J].电子学报,2017,45(2):337-345. Chen L,Guo Y J,Ge B Z.Nonlinear unmixing of hyperspectral images based on differential search algorithm[J].Acta Electronica Sinica,2017,45(2):337-345.(in Chinese)
[8] Bioucas-Dias J M,Plaza A,Dobigeon N,et al.Hyperspectral unmixing overview:Geometrical,statistical,and sparse regression-based approaches[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2012,5(2):354-379.
[9] Iordache M,Bioucas-Dias J M,Plaza A.Sparse unmixing of hyperspectral data[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(6):2014-2039.
[10] Zhang S Q,Li J,Li H C,et al.Spectral-spatial weighted sparse regression for hyperspectral image unmixing[J].IEEE Transactions on Geoscience and Remote Sensing,2018,56(6):3265-3276.
[11] Iordache M,Bioucas-Dias J M,Plaza A.Collaborative sparse regression for hyperspectral unmixing[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(1):341-354.
[12] Chen F,Zhang Y.Sparse hyperspectral unmixing based on constrained Lp-L2 optimization[J].IEEE Geoscience and Remote Sensing Letters,2013,10(5):1142-1146.
[13] Sun L,Wu Z,Xiao L,Liu J,Wei Z,Dang F.A novel L1/2 sparse regression method for hyperspectral unmixing[J].International Journal of Remote Sensing,2013.34(20):6983-7001.
[14] Deng C Z,Zhang S Q,Wang S Q,et al.Sparse hyperspectral unmixing based on smoothed L0 regularization[J].Infrared Physics and Technology,2014,67:306-314.
[15] Candès E J,Wakin M B,Boyd S P.Enhancing sparsity by reweighted L1 minimization[J].Journal of Fourier Analysis Applications,2008,14(5):877-905.
[16] 吴泽彬,韦志辉,孙乐,刘建军.基于迭代加权L1正则化的高光谱混合像元分解[J].南京理工大学学报,2011.35(4):431-435. Wu Z B,Wei Z H,Sun L,Liu J J.Hyperspectral unmixing based on iterative weighted L1 regularization[J].Journal of Nanjing University of Science and Technology,2011,35(4):431-435.(in Chinese)
[17] Wang R,Li H-C,Liao W Z,Piurica A.Double reweighted sparse regression for hyperspectral unmixing[A].Proceedings of the IEEE International Geoscience and Remote Sensing Symposium[C].Beijing,China:IEEE,2016.6986-6989.
[18] Zheng C Y,Li H,Wang Q,Chen C L P.Reweighted sparse regression for hyperspectral unmixing[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(1):479-488.
[19] Shi C,Wang L.Incorporating spatial information in spectral unmixing:A review[J].Remote Sensing of Environment,2014,149:70-87.
[20] Iordache M,Bioucas-Dias J M,Plaza A.Total variation spatial regularization for sparse hyperspectral unmixing[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(11):4484-4502.
[21] Zhao X,Wang F,Huang T,Ng M,Plemmons R.Deblurring and sparse unmixing for hyperspectral images[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(7):4045-4058.
[22] 陈允杰,葛魏东,孙乐.一种基于协同稀疏和全变差的高光谱线性解混方法[J].自动化学报,2018,44(1):116-128. Chen Y J,Ge W D,Sun L.A novel linear hyperspectral unmixing method based on collaborative sparsity and total variation[J].Acta Automatica Sinica,2018,44(1):116-128.(in Chinese)
[23] He W,Zhang H,Zhang L.Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(7):3909-3921.
[24] Zhai H,Zhang H,Zhang L,Li P.Total variation regularized collaborative representation clustering with a locally adaptive dictionary for hyperspectral imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2019,57(1):166-180.
[25] Sun L,Jeon B,Zheng Y,Chen Y.Hyperspectral unmixing based on L1-L2 sparsity and total variation[A].Proceedings of the IEEE International Conference on Image Processing (ICIP)[C].Phoenix,USA:IEEE,2016:4349-4353.
[26] Candès E J,Tao T.Near-optimal signal recovery from random projections:Universal encoding strategies[J].IEEE Transactions on Information Theory,2006,52(12):5406-5425.
[27] Wang R,Li H-C,Pizurica A,Li J,Plaza A,Emery W.Hyperspectral unmixing using double reweighted sparse regression and total variation[J].IEEE Geoscience and Remote Sensing Letters,2017.14(7):1146-1150.
[28] Bioucas-Dias J M,Figueiredo M A T.Alternating direction algorithms for constrained sparse regression:Application to hyperspectral unmixing[A].Proceedings of the 2nd IEEE Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing[C].Reykjavik,Iceland:IEEE,2010.1-4.
[29] Martin G,Plaza A.Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2012,5(2):380-395.
[30] Clark R,Swayze G,et al.Imaging spectroscopy:Earth and planetary remote sensing with the USGS Tetracorder and expert systems[J].Journal of Geophysical Research,2003,108(E12):5131-5135. |