非合作接收条件下,连续相位调制(CPM,Continuous Phase Modulation)信号多变未知的信号体制使其符号速率盲估计一直是分析该类信号的难点之一.现有的算法大多直接基于信号的瞬时频率或循环平稳性,存在抗噪性能差,不适用于多指数CPM信号等问题.针对该问题,本文通过分析小波变换在信号分解和时频分析中的优势,提出一种综合利用离散小波(DWT,Discrete Wavelet Transform)分解和频率脊线提取的CPM信号符号速率估计的新算法.算法对比分析表明,所提算法具有更好的抗噪性能且在小数据量时也能达到较好的估计性能.
Abstract
In the case of non-cooperative reception, blind estimation for the symbol rate estimation of continuous phase modulation (CPM) signals is usually one of the difficulties in signal analysis due to the varied signal specification. Most of the existing algorithms are based directly on instantaneous frequency or cyclostationarity, which have poor anti-noise performance and are not suitable for multi-h CPM signals. By analyzing the advantages of wavelet transform in signal decomposition and time-frequency, a new algorithm based on discrete wavelet transform (DWT) and frequency ridge extraction is proposed to estimate the symbol rate of CPM signal. Comparative analysis of the algorithm shows that the proposed method has better performance in condition of the low signal to noise ratio (SNR) and small data volume.
关键词
连续相位调制 /
符号速率估计 /
小波变换 /
信号分解 /
时频分析 /
频率脊线提取
{{custom_keyword}} /
Key words
continuous phase modulation /
symbol rate estimation /
wavelet transform /
signal decomposition /
time-frequency analysis /
frequency ridge extraction
{{custom_keyword}} /
中图分类号:
TN911.6
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Bianchi P,Loubaton P,Sirven F.On the blind estimation of the parameters of continuous phase modulated signals[J].IEEE Journal on Selected Areas in Communications,2005,23(5):944-962.
[2] 王宁,彭华,崔伟亮.一种非数据辅助的连续相位调制信号符号速率估计算法[J].信号处理,2010,26(12):1864-1869.
[3] 张韬.一种新颖的Multi-h CPM信号符号速率盲估计算法[J].电讯技术,2012,52(9):1448-1451.
[4] 吴厚明,无量,江桦.一种基于循环平稳性的CPM信号符号速率盲估计算法[J].信息工程大学学报,2012,13(2):224-228.
[5] 彭华甫.连续相位调制信号识别与参数估计[D].郑州:解放军信息工程大学,2013.
[6] 孙锦华,何恒.现代调制解调技术[M].西安:西安电子科技大学出版社,2014.95-96.
[7] 张贤达.现代信号处理(第三版)[M].北京:清华大学出版社,2015.281-322.
[8] 樊昌信,曹丽娜.通信原理(第6版)[M].北京:国防工业出版社,2015.22-147.
[9] Mallat S G,Zhang Z.Matching pursuit with time-frequency dictionaries[J].IEEE Trans on Signal Processing,1993,41(12):3397-3415.
[10] Bargmann V.On a Hilbert space of analytic functions and an associated integral transform.Part1[J].Communications on Pure & Applied Mathematics,1961,14(3):187-214.
[11] 马拉特.信号处理的小波导引[M].杨力华,等,译.北京:机械工业出版社,2002.281-282.
[12] J G Proakis.Digital Communications[M].4th ed.New York:McGraw-Hill,2003.
[13] 陈建文.基于小波脊的数字信号的调制识别[D].郑州:解放军信息工程大学,2007.
[14] Ho K C,Prokopiw W,Chan Y T.Modulation identification of digital signals by the wavelet transform[J].IEE Proceedings Radar,Sonar and Navigation (S1350-2395),2000,147(4):169-176.
[15] 邱钊洋,黄焱,欧阳喜.基于时频修正与波形变换的MFSK信号调制参数盲估计[J].电子与信息学报,2017,39(10):254-258.
[16] 刘双平,闻翔,金梁.一种抑制符号速率估计背景色噪声的非线性滤波算法[J].电子学报,2007,35(1):95-99. LIU Shuang-ping,WEN Xiang,JIN Liang.A new filtering algorithm for colored background self-noise suppressing of symbol rate estimation[J].Acta Electronica Sinica,2007,35(1):95-99.(in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}