[1] Ramakrishnan N,Keller B J,Mirza B J,et al.Privacy risks in recommender systems[J].IEEE Internet Computing,2001,5(6):54-62.
[2] Yu Z,Wong R K,Chi C H.Efficient role mining for context-aware service recommendation using a high-performance cluster[J].IEEE Transactions on Services Computing,2017,10(6):914-926.
[3] Bost R,Popa R A,Tu S,et al.Machine learning classification over encrypted data[A] Network and Distributed System Security Symposium[C].San Diego,USA:ISOC,2015.4324-4325.
[4] Polatidis N,Georgiadis C K,Pimenidis E,et al.Privacy-preserving collaborative recommendations based on random perturbations[J].Expert Systems with Applications,2016,71(C):18-25.
[5] Erkin Z,Veugen T,Toft T,et al.Generating private recommendations efficiently using homomorphic encryption and data packing[J].IEEE Transactions on Information Forensics & Security,2012,7(3):1053-1066.
[6] Liu A,Wang W,Li Z,et al.A Privacy-preserving framework for trust-oriented point-of-interest recommendation[J].IEEE Access,2018,6:393-404.
[7] Wang S,Tang J,Wang Y,et al.Exploring hierarchical structures for recommender systems[J].IEEE Transactions on Knowledge and Data Engineering,2018,30(6):1022-35.
[8] Adomavicius G,Tuzhilin A.Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge & Data Engineering,2005,17(6):734-749.
[9] Liu Z,Qu W,Li H,et al.A hybrid collaborative filtering recommendation mechanism for P2P networks[J].Future Generation Computer Systems,2010,26(8):1409-1417.
[10] Gilburd B,Schuster A,Ran W.k-TTP:a new privacy model for large-scale distributed environments[A].Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].New York,USA:ACM,2004.563-568.
[11] Neves A R D M,Álvaro Marcos G.Carvalho,Ralha C G.Agent-based architecture for context-aware and personalized event recommendation[J].Expert Systems with Applications,2014,41(2):563-573.
[12] Bilenko M,Richardson M.Predictive client-side profiles for personalized advertising[A] Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].San Diego,USA:ACM,2011.413-421.
[13] Veugen T,De Haan R,Cramer R,et al.A framework for secure computations with two non-colluding servers and multiple clients,applied to recommendations[J].IEEE Transactions on Information Forensics & Security,2015,10(3):445-457.
[14] Rahman M,Ballesteros J,Carbunar B,et al.Toward preserving privacy and functionality in geosocial networks[A].Proceedings of the 19th ACM Annual International Conference on Mobile Computing & Networking[C].Miami,USA:ACM,2013.207-210.
[15] L Bisheng,U Hengartner.Privacy-preserving social recommendations in geosocial networks[A].Proceedings of the 2013 Eleventh Annual International Conference on Privacy,Security and Trust (PST)[C].Tarragona,Spain:IEEE,2013.69-76.
[16] 鲜征征,李启良,黄晓宇,陆寄远,李磊.融合显/隐式信任协同过滤算法的差分隐私保护[J].电子学报,2018,46(12):3050-3059.. XIAN Zheng-zheng,LI Qi-liang,HUANG Xiao-yu,LU Ji-yuan,LI Lei.Differential privacy protection for collaborative filtering algorithms with explicit and implicit trust[J].Acta Electronica Sinica,2018,46(12):3050-3059.(in Chinese)
[17] 范利云,左万利,王英,王鑫.一种基于差分隐私和时序的推荐系统模型研究[J].电子学报,2017,45(9):2057-2064. FAN Li-yun,ZUO Wan-li,WANG Ying,WANG Xin.Research on recommender system model based on differential privacy and time series[J].Acta Electronica Sinica,2017,45(9):2057-2064.(in Chinese)
[18] D Riboni,C Bettini.A platform for privacy-preserving geo-social recommendation of points of interest[A].Proceedings of the 14th International Conference on Mobile Data Management (MDM)[C].Washington,USA:IEEE,2013.347-349.
[19] C.Dwork.Differential privacy[J].Lecture Notes in Computer Science,2006,26(2):1-12.
[20] Zheng X,Luo Y,Sun L,et al.A novel social network hybrid recommender system based on hypergraph topologic structure[J].World Wide Web Journal,2018,21(4):985-1013.
[21] Xu Z,Chen L,Dai Y,et al.A dynamic topic model and matrix factorization-based travel recommendation method exploiting ubiquitous data[J].IEEE Transactions on Multimedia,2017,19(8):1933-1945.
[22] Lian D,Ge Y,Zhang F,et al.Scalable content-aware collaborative filtering for location recommendation[J].IEEE Transactions on Knowledge & Data Engineering,2018,30(6):1122-1135.
[23] Wang L,Zhang W,He X,et al.Supervised reinforcement learning with recurrent neural network for dynamic treatment recommendation[A].Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining[C].London,UK:ACM,2018.2447-2456.
[24] Huang Z,Shan G,Cheng J,et al.TRec:an efficient recommendation system for hunting passengers with deep neural networks[J].Neural Computing and Applications,2019,31(s1):209-222.
[25] Seo S,Huang J,Yang H,et al.Interpretable convolutional neural networks with dual local and global attention for review rating prediction[A].Proceedings of the Eleventh ACM Conference on Recommender Systems[C].Como,Italy:ACM,2017.297-305.
[26] Wang Q,Yin H,Hu Z,et al.Neural memory streaming recommender networks with adversarial training[A].Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining[C].London,UK:ACM,2018.2467-2475.
[27] Koren Y,Bell R,Volinsky C.Matrix factorization techniques for recommender systems[J].Computer,2009,42(8):30-37.
[28] Furukawa J.Request-based comparable encryption[A].European Symposium on Research in Computer Security[C].Egham,UK:Springer,2013.129-146 |