中图分类号:
TP309
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Bridges L.The changing face of malware[J].Network Security,2008,2008(1):17-20.
[2] Symantec.2019 internet security threat report[J/OL].https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf,2020-06-28.
[3] Al-Rimy B A S,Maarof M A,Shaid S Z M.Ransomware threat success factors,taxonomy,and countermeasures:a survey and research directions[J].Computers & Security,2018,74(5):144-166.
[4] Kok S H,Abdullah A,Jhanjhi N Z,et al.Ransomware,threat and detection techniques:A review[J].International Journal Computer Science and Network Security,2019,19(2):136-146.
[5] Kok S H,Abdullah A,Jhanjhi N Z,et al.Prevention of crypto-ransomware using a pre-encryption detection algorithm[J].Computers,2019,8(4):79.
[6] Sgandurra D,Muñoz-González L,Mohsen R,et al.Automated dynamic analysis of ransomware:benefits,limitations and use for detection[J].Cryptography and Security,2016,9:03-20.
[7] San C C,Thwin M M S,Htun N L.Malicious software family classification using machine learning multi-class classifiers[J].Computational Science and Technology,2019,41:423-433.
[8] 任卓君,陈光,卢文科.基于N-gram特征的恶意代码可视化方法[J].电子学报,2019,47(10):2108-2115. REN Zhuo-jun,CHEN Guang,LU Wen-ke.Malware visualization methods based on N-gram features[J].Acta Electronica Sinica,2019,47(10):2108-2115.(in Chinese)
[9] Zhang W,Yoshida T,Tang X.A comparative study of TF-IDF,LSI and multi-words for text classification[J].Expert Systems with Applications,2011,38(3):2758-2765.
[10] 李鹏伟,姜宇谦,薛飞扬,黄佳佳,徐超.一种基于深度学习的强对抗性Android恶意代码检测方法[J].电子学报,2020,48(8):1502-1508. LI Peng-wei,JIANG Yu-qian,XUE Fei-yang,HUANG Jia-jia,XU Chao.Arobust approach for android malware detection based on deep learning[J].Acta Electronica Sinica,2020,48(8):1502-1508.(in Chinese)
[11] Zhang H,Xiao X,Mercaldo F,et al.Classification of ransomware families with machine learning based on N-gram of opcodes[J].Future Generation Computer Systems,2019,90:211-221.
[12] Harrington P.Machine Learning in Action[M].USA:Manning Publications Co,2012.122-136.
[13] 郭春,陈长青,申国伟,蒋朝惠.一种基于可视化的勒索软件分类方法[J].信息网络安全,2020,20(4):31-39. GUO Chun,CHEN Chang-qing,SHEN Guo-wei,et al.A ransomware classification method based on visualization[J].Netinfo Security,2020,20(4):31-39.(in Chinese)
[14] Sharma S,Singh S.Texture-Basedautomated classification of ransomware[J/OL].https://link.springer.com/article/10.1007/s40031-020-00499-w.2020-10-31.
[15] Choudhary S P,Vidyarthi M D.A simple method for detection of metamorphic malware using dynamic analysis and text mining[J].Procedia Computer Science,2015,54:265-270.
[16] Damodaran A,Troia FD,Visaggio CA,et al.A comparison of static,dynamic,and hybrid analysis for malware detection[J].Computer Virology and Hacking Techniques,2017,13(1):1-12.
[17] Hampton N,Baig Z,Zeadally S.Ransomware behavioural analysis on windows platforms[J].Journal of Information Security and Applications,2018,40:44-51.
[18] Kharaz A,Arshad S,Mulliner C,et al.UNVEIL:A large-scale,automated approach to detecting ransomware[A].25th USENIX Security Symposium[C].Austin,TX:Association,2016.757-772.
[19] Vinayakumar R,Soman K P,Velan K K,et al.Evaluating shallow and deep networks for ransomware detection and classification[A].International Conference on Advances in Computing,Communications and Informatics (ICACCI)[C].Croatia:IEEE,2017.259-265.
[20] Le Cun Y,Bengio Y,Hinton G.Deep learning[J].Nature,2015,521(7553):436-444.
[21] Feng Y,Liu C,Liu B.Poster:A new approach to detecting ransomware with deception[J/OL].http://173.236.186.201/TC/SP2017/poster-abstracts/IEEE-SP17_Posters_paper_26.pdf.2020-09-24.
[22] Scaife N,Carter H,Traynor P,et al.Cryptolock (and drop it):Stopping ransomware attacks on user data[A].IEEE 36th International Conference on Distributed Computing Systems (ICDCS)[C].Nara Japan:IEEE,2016.303-312.
[23] Morato D,Berrueta E,Magaña E,et al.Ransomware early detection by the analysis of file sharing traffic[J].Journal of Network and Computer Applications,2018,124:14-32.
[24] 吴玉佳,李晶,宋成芳,常军.基于高效用神经网络的文本分类方法[J].电子学报,2020,48(2):279-284. WU Yu-jia,LI Jing,SONG Cheng-fang,CHANG Jun.High utility neural networks for text classification[J].Acta Electronica Sinica,2020,48(2):279-284.(in Chinese)
[25] Singh K,Agrawal S.Comparative analysis of five machine learning algorithms for IP traffic classification[A].International Conference on Emerging Trends in Networks and Computer Communications (ETNCC)[C].Udaipur,India:IEEE,2011.33-38.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金 (No.61802081); 贵州省科学技术基金 (黔科合基础[2017]1051,黔科合重大专项字[2018]3001); 贵州省公共大数据重点实验室开放课题 (No.2017BDKFJJ025)
{{custom_fund}}