不确定分数阶高维混沌系统的自适应滑模同步

毛北行, 王东晓

电子学报 ›› 2021, Vol. 49 ›› Issue (4) : 775-780.

PDF(2849 KB)
PDF(2849 KB)
电子学报 ›› 2021, Vol. 49 ›› Issue (4) : 775-780. DOI: 10.12263/DZXB.20200316
学术论文

不确定分数阶高维混沌系统的自适应滑模同步

  • 毛北行, 王东晓
作者信息 +

Self-Adaptive Sliding Mode Synchronization of Uncertain Fractional-Order High-Dimension Chaotic Systems

  • MAO Bei-xing, WANG Dong-xiao
Author information +
文章历史 +

摘要

混沌及其同步已经成为研究的热点,随着分数阶混沌系统建模的需要,分数阶低阶混沌系统的同步控制已经取得了很多结果,国内外针对分数阶高维混沌系统的同步控制方面的研究还十分罕见,本文考虑了不确定因素和外部扰动的影响,利用自适应滑模方法研究高维不确定分数阶混沌系统的同步,基于同步控制理论给出了滑模函数的设计和控制器的构造,获得分数阶高维不确定混沌系统的自适应滑模同步的充分条件.研究结论说明:设计恰当的滑模函数、控制器和适应规则条件下不确定分数阶高维混沌系统取得自适应滑模同步,并把分数阶的相关结论平推到了整数阶,用仿真例子对分数阶高维混沌系统取得滑模同步充分条件的正确性进行了验证.

Abstract

Chaos and its synchronization has become a hot topic. With the need of fractional-order chaotic system modeling, many results have been achieved in the synchronization control of fractional low-order chaotic systems. Studies on the synchronization control of fractional high-dimensional chaotic systems at home and abroad are still very rare. In this paper, the influence of uncertainties and external disturbances is considered. The self-adaptive sliding mode synchronization of high-dimension fractional-order chaotic systems is studied based on self-adaptive sliding mode methods. The sliding mode functions are funded and controllers are designed based on synchronization control theory. The sufficient conditions are obtained for high-dimension fractional-order uncertain chaotic systems getting self-adaptive sliding mode synchronization. The conclusion demonstrate that high-dimension fractional-order uncertain chaotic systems can get self-adaptive sliding mode synchronization under appropriate sliding mode functions, controllers and adaptive rules. And we extend the conclusions of fractional-order high-dimension uncertain chaotic system to integer-order. The sufficient conditions for fractional-order high-dimension chaotic systems getting sliding mode synchronization are verified to be correct using numerical simulation examples.

关键词

混沌 / 分数阶 / 滑模 / 自适应 / 不确定 / 控制

Key words

chaotic / fractional-order / sliding mode / self-adaptive / uncertain / control

引用本文

导出引用
毛北行, 王东晓. 不确定分数阶高维混沌系统的自适应滑模同步[J]. 电子学报, 2021, 49(4): 775-780. https://doi.org/10.12263/DZXB.20200316
MAO Bei-xing, WANG Dong-xiao. Self-Adaptive Sliding Mode Synchronization of Uncertain Fractional-Order High-Dimension Chaotic Systems[J]. Acta Electronica Sinica, 2021, 49(4): 775-780. https://doi.org/10.12263/DZXB.20200316
中图分类号: O482.4   

参考文献

[1] SARA H,HEYDAR T S.Design of nonlinear conformable fractional-order sliding mode controller for a class of nonlinear systems[J].Journal of Control,Automation and Electrical Systems,2019,35(3):313-338.
[2] ZHANG C.Synchronization and tracking of multi-space craft formation attitude control using adaptive sliding mode[J].Asian Journal of Control,2019,21(2):832-846.
[3] SUN Z Y,DAI Y Y,CHEN C C.Global fast finite-time partial state feedback stabilization of high-order nonlinear systems with dynamic uncertainties[J].Information Sciences,2019,77(1):219-236.
[4] 毛北行,周长芹.分数阶不确定Duffling混沌系统的终端滑模同步[J].东北师范大学学报(自然版),2018,50(2):47-50. MAO B X,ZHOU C Q.Terminal sliding mode synchronization of fractional-order uncertain Duffling chaotic systems[J].Journal of Northeast Normal University(Natural Science),2018,50(2):47-50.(in Chinese)
[5] 毛北行.分数阶Newton-Leipnik混沌系统滑模同步的两种方法[J].吉林大学学报(理学版),2018,56(3):708-712. MAO B X.Two methods for sliding mode synchronization of fractional-order Newton-Leipnik chaotic systems[J].Journal of Jilin University(Science Edition),2018,56(3):708-712.(in Chinese)
[6] 毛北行.纠缠混沌系统的比例积分滑模同步[J].山东大学学报工学版,2018,48(4):50-54. MAO B X.Ratio integral sliding mode synchronization control of entanglement chaotic systems[J].Journal of Shandong University(Engineering Science),2017,47(4):31-36.(in Chinese)
[7] 王东晓.分数阶超混沌Bao系统的比例积分滑模同步[J].内蒙古农业大学学报(自然版),2018,39(3):83-89. WANG D X.Proportional integral sliding mode synchronization for fractional-order hyper-chaotic Bao system[J].Journal of Inner Mongolia Agricultural University(Science Edition),2018,39(3):83-89.(in Chinese)
[8] 王建军,张伟,王东晓,毛北行.一类整数阶分数阶单摆系统的混沌同步[J].数学的实践与认识,2018,48(3):193-199. WANG J J,ZHANG W,WANG D X,MAO B X.Chaos synchronization of a class of fractional-order simple pendulum[J].Mathematics in Practice and Theory,2018,48(3):193-199.(in Chinese)
[9] 程春蕊,朱军辉,毛北行.分数阶单摆系统的终端滑模混沌同步[J].工程数学学报,2019,36(1):99-104. CHENG C R,ZHU J H,MAO B X.Chaos synchronization of fractional-order simple pendulum[J].Chinese Journal of Engineering Mathematics,2019,36(1):99-104.(in Chinese)
[10] 宋晓娜,宋帅,满景涛.不确定分数阶Genesio混沌系统的反演滑模同步[J].山东科技大学学报(自然版),2019,38(5):66-71. SONG X N,SONG S,MAN J T.Back-stepping sliding mode synchronization of uncertain fractional-order Genesio chaotic system[J].Journal of Shandong University of Science and Technology (Natural Science),2019,38(5):66-71.(in Chinese)
[11] 刘晓君,洪灵.分数阶Genesio-Tesi系统的混沌及自适应同步[J].动力学与控制学报,2016,14(4):318-323. LIU X J,HONG L.Chaos and adaptive synchronization of fractional-order Genesio-Tesi systems[J].Journal of Dynamics and Control,2016,14(4):318-323.(in Chinese)
[12] 毛北行,程春蕊.分数阶二次非线性Sprott混沌系统的滑模同步控制[J].数学杂志,2018,38(3):490-496. MAO B X,CHENG C R.Sliding mode synchronization of fractional-order quadratic nonlinearity Sprott chaotic systems[J].Journal of Mathematics,2018,38(3):490-496.(in Chinese)
[13] 孙涛,秦卫阳.一类高维动力学系统的混沌预测同步实现方法研究[J].振动与冲击,2016,35(15):50-52. SUN T,QING W Y.Anticipated synchronization of chaos for a class of high dimensional dynamic systems[J].Journal of Vibration and Shock,2016,35(15):50-52.(in Chinese)
[14] 王磊,张勇,舒永录.一类高维混沌模型的动力学分析及数值仿真[J].数学的实践与认识,2018,48(12):220-226. WANG L,ZHANG Y,SHU Y L.Dynamic behaviors of a new high-order chaos model and its numerical simulation[J].Mathematics in Practice and Theory,2018,48(12):220-226.(in Chinese)
[15] 张勇,舒永录.一类Lorenz型高维混沌系统的分析[J].数学的实践与认识,2020,50(1):216-222. ZHANG Y,SHU Y L.Analysis of a new high-order Lorenztype chaos model[J].Mathematics in Practice and Theory,2020,50(1):216-222.(in Chinese)
[16] 彭珊,李万祥,成龙.高维复杂碰撞振动系统的分岔与混沌演化[J].机械设计,2014,31(9):54-57. PENG S,LI W X,CHENG L.Bifurcation and chaos evolution of high-dimensional complicated collision vibration system[J].Journal of Machine Design,2014,31(9):54-57.(in Chinese)
[17] 赵灵冬,胡建兵,包志华,等.分数阶系统有限时间稳定性理论及分数阶超混沌Lorenz系统有限时间同步[J].物理学报,2011,60(10):5071-5075. ZHAO L D,HU J B,BAO Z H,et al.A finite-time stable theory about fractional systems and finite-time synchronization fractional super chaotic Lorenz systems[J].Acta Phys Sin,2011,60(10):5071-5075.(in Chinese)
[18] 闫丽宏.广义分数阶Sprott-C混沌系统的有限时间滑同步[J].吉林学报(理学版),2019,57(4):940-945. YAN L H.Finite-time sliding mode synchronization of generalized fractional-order Sprott-C chaotic systems[J].Journal of Jilin University(Science Edition),2019,57(4):940-945.(in Chinese)
[19] 吴强,黄建华.分数阶微积分[M].北京,清华大学出版社,2016.12-15. WU Q,HUANG J H.Fractional-Order Calculus[M].Beijing:Tsinghua University Press,2016.12-15.(in Chinese)

基金

国家自然科学基金 (No.41906003); 航空科学基金 (No.2017ZD55014)
PDF(2849 KB)

文章所在专题

机器学习之图像处理

Accesses

Citation

Detail

段落导航
相关文章

/