电子学报 ›› 2021, Vol. 49 ›› Issue (5): 861-871.DOI: 10.12263/DZXB.20200936
所属专题: 面向自动驾驶和智慧交通协同的通信与控制
• 面向自动驾驶和智慧交通协同的通信与控制 • 上一篇 下一篇
刘雷, 陈晨, 冯杰, 肖婷婷, 裴庆祺
收稿日期:
2020-08-26
修回日期:
2020-11-30
出版日期:
2021-05-25
通讯作者:
作者简介:
基金资助:
LIU Lei, CHEN Chen, FENG Jie, XIAO Ting-ting, PEI Qing-qi
Received:
2020-08-26
Revised:
2020-11-30
Online:
2021-05-25
Published:
2021-05-25
摘要: 通过将移动边缘计算技术应用在车联网,车载边缘计算技术可为车载用户提供低时延、高带宽、高可靠性的应用服务.首先详细介绍了车载边缘计算卸载技术的背景、意义以及本文的贡献.其次,分别概述了车载边缘计算卸载技术的网络架构、主要挑战以及应用场景.然后,从移动分析、卸载模式、资源协作和管理等多个维度全面综述了车载边缘计算卸载技术的研究工作.最后,对车载边缘计算卸载技术的未来研究进行了展望,可对该领域深入的研究提供有价值的参考.
中图分类号:
刘雷, 陈晨, 冯杰, 肖婷婷, 裴庆祺. 车载边缘计算卸载技术研究综述[J]. 电子学报, 2021, 49(5): 861-871.
LIU Lei, CHEN Chen, FENG Jie, XIAO Ting-ting, PEI Qing-qi. A Survey of Computation Offloading in Vehicular Edge Computing Networks[J]. Acta Electronica Sinica, 2021, 49(5): 861-871.
[1] 中国信息通信研究院,华为,电信科学技术研究院.车联网白皮书[R].北京:中国信息通信研究院,2017. [2] 张德干,崔玉亚,陈晨,等.一种面向高速路车联网场景的自适应路由方法[J].电子学报,2020,48(1):172-179. Zhang D G,Cui Y Y,Chen C,et al.An adaptive routing method for high-speed-road scenario of the Internet of vehicle[J].Acta Electronica Sinica,2020,48(1):172-179.(in Chinese). [3] 彭鑫,李仁发,付彬,等.基于路径时延模型的车联网数据分发方案[J].电子学报,2017,45(9):2195-2201. Peng X,Li R F,Fu B,et al.Data dissemination based on road delay for VANETs[J].Acta Electronica Sinica,2017,45(9):2195-2201.(in Chinese). [4] Chen C,Wang C,Qiu T,et al.Caching in vehicular named data networking:architecture,schemes and future directions[J].IEEE Communications Surveys & Tutorials,2020,22(4):2378-2407. [5] Mao Y Y,You C S,Zhang J,et al.A survey on mobile edge computing:The communication perspective[J].IEEE Communications Surveys & Tutorials,2017,19(4):2322-2358. [6] Abbas N,Zhang Y,Taherkordi A,et al.Mobile edge computing:A survey[J].IEEE Internet of Things Journal,2018,5(1):450-465. [7] 施巍松,孙辉,曹杰,等.边缘计算:万物互联时代新型计算模型[J].计算机研究与发展,2017,54(5):907-924. Shi W S,Sun H,Cao J,et al.Edge computing-an emerging computing model for the Internet of everything era[J].Journal of Computer Research and Development,2017,54(5):907-924.(in Chinese). [8] Liu L,Chen C,Pei Q Q,et al.Vehicular edge computing and networking:A survey[J].Mobile Networks and Applications,2020.1-24. [9] 肖海林,吴彬,张中山.C-V2X下车载安全数据两阶段组播的中继选择与功耗分析[J].电子学报,2019,47(11):2248-2255. Xiao H L,Wu B,Zhang Z S.Relay selection and power analysis for two-stage multicast transmission of vehicle safety data under C-V2X[J].Acta Electronica Sinica,2019,47(11):2248-2255.(in Chinese). [10] Bitam S,Mellouk A,Zeadally S.Bio-inspired routing algorithms survey for vehicular ad hoc networks[J].IEEE Communications Surveys & Tutorials,2015,17(2):843-867. [11] Liu L,Chen C,Qiu T,et al.A data dissemination scheme based on clustering and probabilistic broadcasting in VANETs[J].Vehicular Communications,2018,13:78-88. [12] Zhang J,Letaief K B.Mobile edge intelligence and computing for the Internet of vehicles[J].Proceedings of the IEEE,2020,108(2):246-261. [13] Zhang K,Mao Y M,Leng S P,et al.Mobile-edge computing for vehicular networks:A promising network paradigm with predictive off-loading[J].IEEE Vehicular Technology Magazine,2017,12(2):36-44. [14] Dai Y Y,Xu D,Maharjan S,et al.Joint load balancing and offloading in vehicular edge computing and networks[J].IEEE Internet of Things Journal,2019,6(3):4377-4387. [15] Yang C,Liu Y,Chen X,et al.Efficient mobility-aware task offloading for vehicular edge computing networks[J].IEEE Access,2019,7:26652-26664. [16] Huy Hoang V,Ho T M,Le L B.Mobility-aware computation offloading in MEC-based vehicular wireless networks[J].IEEE Communications Letters,2020,24(2):466-469. [17] Yuan Q,Li J L,Zhou H B,et al.A joint service migration and mobility optimization approach for vehicular edge computing[J].IEEE Transactions on Vehicular Technology,2020,69(8):9041-9052. [18] Zhan W H,Luo C B,Min G Y,et al.Mobility-aware multi-user offloading optimization for mobile edge computing[J].IEEE Transactions on Vehicular Technology,2020,69(3):3341-3356. [19] Hou X S,Li Y,Chen M,et al.Vehicular fog computing:A viewpoint of vehicles as the infrastructures[J].IEEE Transactions on Vehicular Technology,2016,65(6):3860-3873. [20] Li C H,Wang S M,Huang X M,et al.Parked vehicular computing for energy-efficient Internet of vehicles:A contract theoretic approach[J].IEEE Internet of Things Journal,2019,6(4):6079-6088. [21] Sun Y X,Guo X Y,Song J H,et al.Adaptive learning-based task offloading for vehicular edge computing systems[J].IEEE Transactions on Vehicular Technology,2019,68(4):3061-3074. [22] Zhu C,Tao J,Pastor G,et al.Folo:latency and quality optimized task allocation in vehicular fog computing[J].IEEE Internet of Things Journal,2019,6(3):4150-4161. [23] Ye H,Li G Y,Juang B H F.Deep reinforcement learning based resource allocation for V2V communications[J].IEEE Transactions on Vehicular Technology,2019,68(4):3163-3173. [24] Chen C,Chen L L,Liu L,et al.Delay-optimized V2V-based computation offloading in urban vehicular edge computing and networks[J].IEEE Access,2020,8:18863-18873. [25] Wang H S,Li X,Ji H,et al.Federated offloading scheme to minimize latency in MEC-enabled vehicular networks[A].2018 IEEE Globecom Workshops (GC Wkshps)[C].Abu Dhabi,United Arab Emirates:IEEE,2018.1-6. [26] Du J B,Yu F R,Chu X L,et al.Computation offloading and resource allocation in vehicular networks based on dual-side cost minimization[J].IEEE Transactions on Vehicular Technology,2019,68(2):1079-1092. [27] Wang Y P,Lang P,Tian D X,et al.A game-based computation offloading method in vehicular multiaccess edge computing networks[J].IEEE Internet of Things Journal,2020,7(6):4987-4996. [28] Tareq M M K,Semiari O,Salehi M A,et al.Ultra reliable,low latency vehicle-to-infrastructure wireless communications with edge computing[A].2018 IEEE Global Communications Conference (GLOBECOM)[C].Abu Dhabi,United Arab Emirates:IEEE,2018.1-7. [29] Dai P,Liu K,Wu X,et al.A learning algorithm for real-time service in vehicular networks with mobile-edge computing[A].ICC 2019-2019 IEEE International Conference on Communications (ICC)[C].Shanghai,China:IEEE,2019.1-6. [30] Liu Y J,Wang S G,Zhao Q L,et al.Dependency-aware task scheduling in vehicular edge computing[J].IEEE Internet of Things Journal,2020,7(6):4961-4971. [31] Zhou S,Sun Y X,Jiang Z Y,et al.Exploiting moving intelligence:Delay-optimized computation offloading in vehicular fog networks[J].IEEE Communications Magazine,2019,57(5):49-55. [32] Zhao J H,Li Q P,Gong Y,et al.Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks[J].IEEE Transactions on Vehicular Technology,2019,68(8):7944-7956. [33] Zhang K,Mao Y,Leng S,et al.Delay constrained offloading for mobile edge computing in cloud-enabled vehicular networks[A].2016 8th International Workshop on Resilient Networks Design and Modeling (RNDM)[C].Halmstad,Sweden:IEEE,2016.288-294 [34] Xu X L,Gu R H,Dai F,et al.Multi-objective computation offloading for Internet of Vehicles in cloud-edge computing[J].Wireless Networks,2020,26(3):1611-1629. [35] Wu Q,Ge H M,Liu H X,et al.A task offloading scheme in vehicular fog and cloud computing system[J].IEEE Access,2019,8:1173-1184. [36] Liu T T,Sun L L,Chen R Q,et al.Martingale theory-based optimal task allocation in heterogeneous vehicular networks[J].IEEE Access,2019,7:122354-122366. [37] LiWang M H,Dai S J,Gao Z B,et al.A computation offloading incentive mechanism with delay and cost constraints under 5G satellite-ground IoV architecture[J].IEEE Wireless Communications,2019,26(4):124-132. [38] Liu Y,Xu C Q,Zhan Y F,et al.Incentive mechanism for computation offloading using edge computing:A Stackelberg game approach[J].Computer Networks,2017,129:399-409. [39] Huang X M,Yu R,Liu J Q,et al.Parked vehicle edge computing:Exploiting opportunistic resources for distributed mobile applications[J].IEEE Access,2018,6:66649-66663. [40] Shi J M,Du J,Wang J,et al.Distributed V2V computation offloading based on dynamic pricing using deep reinforcement learning[A].2020 IEEE Wireless Communications and Networking Conference (WCNC)[C].Seoul,Korea (South):IEEE,2020.1-6. [41] Li Y W,Yang B,Chen Z J,et al.A contract-stackelberg offloading incentive mechanism for vehicular parked-edge computing networks[A].2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring)[C].Kuala Lumpur,Malaysia:IEEE,2019.1-5. [42] Ning Z L,Huang J,Wang X J,et al.Mobile edge computing-enabled Internet of vehicles:Toward energy-efficient scheduling[J].IEEE Network,2019,33(5):198-205. [43] Zhang L,Zhao Z,Wu Q W,et al.Energy-aware dynamic resource allocation in UAV assisted mobile edge computing over social Internet of vehicles[J].IEEE Access,2018,6:56700-56715. [44] Ku Y J,Dey S.Sustainable vehicular edge computing using local and solar-powered roadside unit resources[A].2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)[C].Honolulu,HI,USA:IEEE,2019.1-7. [45] Jang Y,Na J,Jeong S,et al.Energy-efficient task offloading for vehicular edge computing:joint optimization of offloading and bit allocation[A].2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring)[C].Antwerp,Belgium:IEEE,2020.1-5. [46] Zhou Z Y,Feng J H,Chang Z,et al.Energy-efficient edge computing service provisioning for vehicular networks:A consensus ADMM approach[J].IEEE Transactions on Vehicular Technology,2019,68(5):5087-5099. [47] Luong N C,Hoang D T,Gong S M,et al.Applications of deep reinforcement learning in communications and networking:A survey[J].IEEE Communications Surveys & Tutorials,2019,21(4):3133-3174. [48] Liu Y,Yu H M,Xie S L,et al.Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks[J].IEEE Transactions on Vehicular Technology,2019,68(11):11158-11168. [49] He Y,Zhao N,Yin H X.Integrated networking,caching,and computing for connected vehicles:A deep reinforcement learning approach[J].IEEE Transactions on Vehicular Technology,2018,67(1):44-55. [50] Tan L T,Hu R Q.Mobility-aware edge caching and computing in vehicle networks:A deep reinforcement learning[J].IEEE Transactions on Vehicular Technology,2018,67(11):10190-10203. [51] Ning Z L,Dong P R,Wang X J,et al.Deep reinforcement learning for intelligent Internet of vehicles:An energy-efficient computational offloading scheme[J].IEEE Transactions on Cognitive Communications and Networking,2019,5(4):1060-1072. [52] Ning Z L,Zhang K Y,Wang X J,et al.Joint computing and caching in 5G-envisioned Internet of vehicles:A deep reinforcement learning-based traffic control system[J].IEEE Transactions on Intelligent Transportation Systems,2020,PP(99):1-12. [53] Dai Y Y,Xu D,Zhang K,et al.Deep reinforcement learning and permissioned blockchain for content caching in vehicular edge computing and networks[J].IEEE Transactions on Vehicular Technology,2020,69(4):4312-4324. [54] Dai Y Y,Xu D,Maharjan S,et al.Artificial intelligence empowered edge computing and caching for Internet of vehicles[J].IEEE Wireless Communications,2019,26(3):12-18. [55] Qi Q,Wang J Y,Ma Z Y,et al.Knowledge-driven service offloading decision for vehicular edge computing:A deep reinforcement learning approach[J].IEEE Transactions on Vehicular Technology,2019,68(5):4192-4203. [56] 黄志清,曲志伟,张吉,等.基于深度强化学习的端到端无人驾驶决策[J].电子学报,2020,48(9):1711-1719. Huang Z Q,Qu Z W,Zhang J,et al.End-to-end autonomous driving decision based on deep reinforcement learning[J].Acta Electronica Sinica,2020,48(9):1711-1719.(in Chinese) |
[1] | 郑涛, 蒙祖尧, 张宏科. 基于多信道绑定的应急终端协同方法[J]. 电子学报, 2022, 50(11): 2645-2652. |
[2] | 陈亮, 李峰, 任保全, 杨建喜. 软件定义物联网研究综述[J]. 电子学报, 2021, 49(5): 1019-1032. |
[3] | 廖勇, 田肖懿, 蔡志镕, 花远肖, 韩庆文. 面向C-V2I的基于边缘计算的智能信道估计[J]. 电子学报, 2021, 49(5): 833-842. |
[4] | 许新操, 刘凯, 刘春晖, 蒋豪, 郭松涛, 吴巍炜. 基于势博弈的车载边缘计算信道分配方法[J]. 电子学报, 2021, 49(5): 851-860. |
[5] | 覃剑, 石昌伟, 张媛, 贾云健, 胡浩星. 边缘视频处理的细粒度划分与重组部署算法[J]. 电子学报, 2021, 49(11): 2152-2159. |
[6] | 崔玉亚, 张德干, 张婷, 杨鹏, 朱浩丽. 一种面向移动边缘计算的多用户细粒度任务卸载调度方法[J]. 电子学报, 2021, 49(11): 2202-2207. |
[7] | 张文芳, 雷丽婷, 王小敏, 王宇. 面向云服务的安全高效无证书聚合签名车联网认证密钥协商协议[J]. 电子学报, 2020, 48(9): 1814-1823. |
[8] | 张德干, 崔玉亚, 陈晨, 刘晓欢, 牛红莉. 一种面向高速路车联网场景的自适应路由方法[J]. 电子学报, 2020, 48(1): 172-179. |
[9] | 罗睿辞, 叶蔚, 刘学洋, 孙基男, 张世琨. 基于拥塞博弈的微服务运行时资源管理方法[J]. 电子学报, 2019, 47(7): 1497-1505. |
[10] | 彭鑫, 李仁发, 付彬, 李文, 刘志鹏. 基于路径时延模型的车联网数据分发方案[J]. 电子学报, 2017, 45(9): 2195-2201. |
[11] | 匡桂娟, 曾国荪, 曹洁, 熊焕亮. 基于图匹配理论的云任务与云资源满意“婚配”方法[J]. 电子学报, 2014, 42(8): 1582-1586. |
[12] | 盛洁, 唐良瑞, 郝建红. 异构无线网络中基于业务转移和接入控制的混合负载均衡[J]. 电子学报, 2013, 41(2): 321-328. |
[13] | 李建江;崔健;严林;李福林;. 一种基于动态规划的并行构件资源选择算法[J]. 电子学报, 2011, 39(4): 887-893. |
[14] | 陈东, 李建东, 李维英, 马静. 认知无线电环境下MIMO-OFDM系统的无线资源管理[J]. 电子学报, 2007, 35(6A): 60-63,53. |
[15] | 卢建斌, 胡卫东, 郁文贤. 基于协方差控制的相控阵雷达资源管理算法[J]. 电子学报, 2007, 35(3): 402-408. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||