本文针对灰狼优化(Grey Wolf Optimizer,GWO)算法平衡全局探索和局部搜索能力的不足,提出了一种基于反向改进的灰狼算法(Opposition Learning Grey Wolf Optimizer,OLGWO),来优化预测模型的超参数,以提高其用于交通流预测的精度与鲁棒性.本算法在迭代过程中采用了反向学习策略,并引入了等级相关概念,主要通过计算普通狼与目标狼的Spearman相关系数,并根据其值来选择性地更新狼种群.实验先对12个标准测试函数对比了四种算法OLGWO、TGWO(Transformed Grey Wolf Optimizer)、GWO、PSO(Particle Swarm Optimization),得到了寻优均值和标准差,验证了OLGWO算法具有突出的性能优势;然后采用美国加州公路交通流数据,在不同缺失率下比较了四种算法优化的反向传播(Back Propagation,BP)网络模型,结果显示,OLGWO-BP模型预测精度比其它三种模型最高分别有1.95%、3.98%和11.07%的提升,同时表现出更好的稳定性.
Abstract
Focusing on the weakness of the balance capability between global exploration and local search in the classical GWO algorithm, a novel grey wolf algorithm based on opposition learning (OLGWO), which can evolve the hyper-parameters of forecasting model, is proposed to improve the accuracy and enhance the robustness of traffic flow forecasting models. This algorithm is designed to take advantage of opposition learning strategy with the iterative process, and exploits the concept of rank correlation that can describe the Spearman correlation coefficients between the target wolf and the common wolves, and then selectively updates the each wolf of the whole population according to their values. Firstly, the performance comparison of four algorithms (OLGWO, TGWO, GWO, PSO), based on 12 benchmark functions, is conducted in terms of the two metrics, namely the optimization means and standard deviations. The results verify the outstanding performance of the proposed algorithm. Furthermore, based on the California highway traffic flow data, the four models optimized by the concerned algorithms are compared under different loss rates. The results show that the prediction accuracy of OLGWO-BP is higher than that of the others by 1.95%, 3.98% and 11.07%, respectively, and the stability is better.
关键词
智能交通 /
交通流预测 /
灰狼优化(GWO) /
BP神经网络 /
反向学习(OL)
{{custom_keyword}} /
Key words
intelligent transportation /
traffic flow prediction /
grey wolf optimizer (GWO) /
BP neural networks /
opposition learning
{{custom_keyword}} /
中图分类号:
U491.1
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 代亮,梅洋,钱超,等.基于深度学习的短时交通量预测研究综述[J].计算机科学,2019,46(3):39-47. Dai L,Mei Y,Qian C,et al.Survey on short-term traffic flow forecasting based on deep learning[J].Computer Science,2019,46(3):39-47.(in Chinese).
[2] Moretti F,Pizzuti S,Panzieri S,et al.Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling[J].Neurocomputing,2015,167(C):3-7.
[3] Zhao Z,Chen W H,Wu X M,et al.LSTM network:a deep learning approach for short-term traffic forecast[J].IET Intelligent Transport Systems,2017,11(2):68-75.
[4] 蔡亮,周泓岑,白恒,等.基于多层BiLSTM和改进粒子群算法的应用负载预测方法[J].浙江大学学报(工学版),2020,54(12):2414-2422. Cai L,Zhou H C,Bai H,et al.Application load forecasting method based on multi-layer bidirectional LSTM and improved PSO algorithm[J].Journal of Zhejiang University (Engineering Science),2020,54(12):2414-2422.(in Chinese).
[5] Mirjalili S,Mirjalili S M,Lewis A.Grey wolf optimizer[J].Advances in Engineering Software,2014,69(3):46-61.
[6] 傅蔚阳,刘以安,薛松.基于灰狼算法与小波神经网络的目标威胁评估[J].浙江大学学报(工学版),2018,52(4):680-686. FU W Y,LIU Y A,XUE S.Target threat assessment using grey wolf optimization and wavelet neural network[J].Journal of Zhejiang University (Engineering Science),2018,52(4):680-686.(in Chinese).
[7] 张文胜,郝孜奇,朱冀军,等.基于改进灰狼算法优化BP神经网络的短时交通流预测模型[J].交通运输系统工程与信息,2020,20(2):196-203. Zhang W S,Hao Z Q,Zhu J J,et al.BP neural network model for short-time traffic flow forecasting based on transformed grey wolf optimizer algorithm[J].Journal of Transportation Systems Engineering and Information Technology,2020,20(2):196-203.(in Chinese).
[8] Mee Song H,Sulaiman M H,Mohamed M R.An application of grey wolf optimizer for solving combined economic emission dispatch problems[J].International Review on Modelling and Simulations (IREMOS),2014,7(5):838.
[9] Heidari A A,Pahlavani P.An efficient modified grey wolf optimizer with Lévy flight for optimization tasks[J].Applied Soft Computing,2017,(60):115-134.
[10] Tizhoosh H R.Opposition-based learning:a new scheme for machine intelligence[A].International Conference on Computational Intelligence for Modelling,Control and Automation,and International Confere nce on Intelligent Agents,Web Technologies and Internet Commerce[C].Vienna,Austria: IEEE Computer Society,2005.695-701.
[11] 樊嵘,孟大志,徐大舜.统计相关性分析方法研究进展[J].数学建模及其应用,2014,3(1):1-12. Fan R,Meng D Z,Xu D S.Survey of research process on statistical correlation analysis[J].Mathematical Modeling and Its Applications,2014,3(1):1-12.(in Chinese).
[12] Rashedi E,Nezamabadi-pour,H Saryazdi S.GSA:A gravitational search algorithm[J].Information Sciences,2009,179(13):2232-2248.
[13] 沈焱萍,郑康锋,伍淳华,等.智能启发算法在机器学习中的应用研究综述[J].通信学报,2019,40(12):124-137. Shen Y P,Zheng K F,Wu C H,et al.Survey of research on application of heuristic algorithm in machine learning[J].Journal on Communications,2019,40(12):124-137.(in Chinese).
[14] Ali M H,Al Mohammed B A D,Ismail A,et al.A new intrusion detection system based on fast learning network and particle swarm optimization[J].IEEE Access,2018,6:20255-20261.
[15] Wu Q,He F F,Fan X M.The intelligent control system of traffic light based on fog computing[J].Chinese Journal of Electronics,2018,27(6):1265-1270.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金 (No.61272509); 陕西省"百人计划"、陕西省重点研发计划一般项目 (No.2017ZDCXL-GY-05-01)
{{custom_fund}}