1 |
胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(3): 209-220.
|
|
HU S S, GAO R L, LIU L S, et al. Summary of the 2018 report on cardiovascular diseases in China[J]. Chinese Circulation Journal, 2019, 34(3): 209-220. (in Chinese)
|
2 |
马骁, 黎莉, 张薇, 等. 颈动脉血流动力学改变与动脉粥样硬化关系的超声研究[J]. 中国医学影像学杂志, 2001, 9(3): 179-181.
|
|
MA X, LI L, ZHANG W, et al. The hemodynamic changes associated with carotid atherosclerosis as detected by carotid sonography[J]. Chinese Journal of Medical Imaging, 2001, 9(3): 179-181. (in Chinese)
|
3 |
GLASS C K, WITZTUM J L. Atherosclerosis. the road ahead[J]. Cell, 2001, 104(4): 503-516.
|
4 |
BERCOFF J, CHAFFAI S, TANTER M, et al. In vivo breast tumor detection using transient elastography[J]. Ultrasound in Medicine & Biology, 2003, 29(10): 1387-1396.
|
5 |
MONTALDO G, TANTER M, BERCOFF J, et al. Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56(3): 489-506.
|
6 |
JENSEN J A, HOLM O, JENSEN L J, et al. Ultrasound research scanner for real-time synthetic aperture data acquisition[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(5): 881-891.
|
7 |
POREE J, POSADA D, HODZIC A, et al. High-frame-rate echocardiography using coherent compounding with Doppler-based motion-compensation[J]. IEEE Transactions on Medical Imaging, 2016, 35(7): 1647-1657.
|
8 |
COUADE M, PERNOT M, PRADA C, et al. Quantitative assessment of arterial wall biomechanical properties using shear wave imaging[J]. Ultrasound in Medicine & Biology, 2010, 36(10): 1662-1676.
|
9 |
CAENEN A, PERNOT M, KINN EKROLL I, et al. Effect of ultrafast imaging on shear wave visualization and characterization: An experimental and computational study in a pediatric ventricular model[J]. Applied Sciences, 2017, 7(8): 840.
|
10 |
SAYSENG V, GRONDIN J, KONOFAGOU E E. Optimization of transmit parameters in cardiac strain imaging with full and partial aperture coherent compounding[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65(5): 684-696.
|
11 |
NAULEAU P, APOSTOLAKIS I, MCGARRY M, et al. Cross-correlation analysis of pulse wave propagation in arteries: Invitro validation and in vivo feasibility[J]. Physics in Medicine and Biology, 2018, 63(11): 115006.
|
12 |
BERCOFF J, MONTALDO G, LOUPAS T, et al. Ultrafast compound Doppler imaging: Providing full blood flow characterization[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58(1): 134-147.
|
13 |
EKROLL I K, SWILLENS A, SEGERS P, et al. Simultaneous quantification of flow and tissue velocities based on multi-angle plane wave imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60(4): 727-738.
|
14 |
OSMANSKI B F, PERNOT M, MONTALDO G, et al. Ultrafast Doppler imaging of blood flow dynamics in the myocardium[J]. IEEE Transactions on Medical Imaging, 2012, 31(8): 1661-1668.
|
15 |
APOSTOLAKIS I Z, MCGARRY M D J, BUNTING E A, et al. Pulse wave imaging using coherent compounding in a phantom and in vivo[J]. Physics in Medicine and Biology, 2017, 62(5): 1700-1730.
|
16 |
叶为镪, 郭宁, 王丛知, 等. 基于超声平面波的功率多普勒成像方法研究[J]. 集成技术, 2015, 4(3): 79-85.
|
|
YE W Q, GUO N, WANG C Z, et al. Study of power Doppler imaging method with ultrasonic plane wave[J]. Journal of Integration Technology, 2015, 4(3): 79-85. (in Chinese)
|
17 |
HE B B, ZHANG Y F, ZHANG K X, et al. Optimum speckle tracking based on ultrafast ultrasound for improving blood flow velocimetry[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68(3): 494-509.
|
18 |
SARIS A E C M, HANSEN H H G, FEKKES S, et al. A comparison between compounding techniques using large beam-steered plane wave imaging for blood vector velocity imaging in a carotid artery model[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63(11): 1758-1771.
|
19 |
EKROLL I K, VOORMOLEN M M, STANDAL O K V, et al. Coherent compounding in Doppler imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(9): 1634-1643.
|
20 |
LEOW C H, BAZIGOU E, ECKERSLEY R J, et al. Flow velocity mapping using contrast enhanced high-frame-rate plane wave ultrasound and image tracking: Methods and initial in vitro and in vivo evaluation[J]. Ultrasound in Medicine & Biology, 2015, 41(11): 2913-2925.
|
21 |
PODKOWA A S, OELZE M L, KETTERLING J A. High-frame-rate Doppler ultrasound using a repeated transmit sequence[J]. Applied Sciences(Basel, Switzerland), 2018, 8(2): 227.
|
22 |
BURCKHARDT C B. Speckle in ultrasound B-mode scans[J]. IEEE Transactions on Sonics and Ultrasonics, 1978, 25(1): 1-6.
|
23 |
BOHS L N, GEIMAN B J, ANDERSON M E, et al. Speckle tracking for multi-dimensional flow estimation[J]. Ultrasonics, 2000, 38(1/2/3/4/5/6/7/8): 369-375.
|
24 |
TRAHEY G E, ALLISON J W, O T VON RAMM. Angle independent ultrasonic detection of blood flow[J]. IEEE Transactions on Bio-Medical Engineering, 1987, 34(12): 965-967.
|
25 |
LOUPAS T, POWERS J T, GILL R W. An axial velocity estimator for ultrasound blood flow imaging, based on a full evaluation of the Doppler equation by means of a two-dimensional autocorrelation approach[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 42(4): 672-688.
|
26 |
LANG X, ZHENG Q, ZHANG Z M, et al. Fast multivariate empirical mode decomposition[J]. IEEE Access, 2018, 6: 65521-65538.
|
27 |
SWILLENS A, DE SCHRYVER T, LØVSTAKKEN L, et al. Assessment of numerical simulation strategies for ultrasonic color blood flow imaging, based on a computer and experimental model of the carotid artery[J]. Annals of Biomedical Engineering, 2009, 37(11): 2188-2199.
|
28 |
陶倩, 汪源源, Jose Cardoso, 等. 含管壁搏动的超声多普勒血流信号仿真[J]. 声学学报, 2004, 29(3): 267-271.
|
|
TAO Q, WANG Y Y, JOSE C, et al. Simulating Doppler ultrasound blood flow signals with the pulsation of the vascular wall[J]. Acta Acustica, 2004, 29(3): 267-271. (in Chinese)
|
29 |
JENSEN J A. Field A program for simulating ultrasound systems[J]. Medical & Biological Engineering & Computing, 1997, 34(1): 351-352.
|