1 |
MOUSSAÏDM, PEROZON, GARNIERS, et al. The walking behaviour of pedestrian social groups and its impact on crowd dynamics[J]. Plos One, 2010, 5(4): e10047.
|
2 |
ZHAOD, CHENY, LEL. Deep reinforcement learning with visual attention for vehicle classification[J]. IEEE Transactions on Cognitive & Developmental Systems, 2017, 9(4): 356‐367.
|
3 |
ALAHIA, GOELK, RAMANATHANV, et al. Social LSTM: Human trajectory prediction in crowded spaces[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE CS, 2016: 961‐971.
|
4 |
HUANGY F, BIH K, LIZ X, et al. Stgat: Modeling spatial-temporal interactions for human trajectory prediction[C]//Proceedings of the IEEE International Conference on Computer Vision. Seoul: CV/IEEE, 2019: 6271‐6280.
|
5 |
SADEGHIANA, KOSARAJUV, SADEGHIANA, et al. Sophie: An attentive GAN for predicting paths compliant to social and physical constraints[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE CS, 2019: 1349‐1358.
|
6 |
GUPTAA, JOHNSONJ, FEI-FEILI, et al. Social GAN: Socially acceptable trajectories with generative adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE CS, 2018: 2255‐2264.
|
7 |
IVANOVICB, PAVONEM. The trajectron: Probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs[C]//Proceedings of the IEEE International Conference on Computer Vision. Seoul: CV/IEEE, 2019: 2375‐2384.
|
8 |
ZHANGP, OUYANGW, ZHANGP, et al. SR-LSTM: State refinement for LSTM towards pedestrian trajectory prediction[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE CS, 2019: 12077‐12086.
|
9 |
XUEH, HUYNHD Q, REYNOLDSM. Bi-prediction: pedestrian trajectory prediction based on bidirectional LSTM classification[C]//Proceedings of the International Conference on Digital Image Computing: Techniques and Applications. Sydney: IEEE, 2017: 1‐8.
|
10 |
XUEH, HUYNHD Q, REYNOLDSM. SS-LSTM: A hierarchical LSTM model for pedestrian trajectory prediction[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe: IEEE, 2018: 1186‐1194.
|
11 |
XUEH, HUYNHD Q, REYNOLDSM. A location-velocity-temporal attention LSTM model for pedestrian trajectory prediction[J]. IEEE Access, 2020, 8: 44576‐44589.
|
12 |
LEEN, CHOIW, VERNAZAP, et al. Desire: Distant future prediction in dynamic scenes with interacting agents[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2165‐2174.
|
13 |
FERNANDOT, DENMANS, SRIDHARANS, et al. Soft+ hardwired attention: An LSTM framework for human trajectory prediction and abnormal event detection[J]. Neural Networks, 2018, 108: 466‐478.
|
14 |
SUNL, YANZ, MELLADOS M, et al. 3DOF pedestrian trajectory prediction learned from long-term autonomous mobile robot deployment data[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Brisbane: IEEE, 2018: 5942‐5948.
|
15 |
MOHAMEDA, QIANK, ELHOSEINYM, et al. Social-stgcnn: A social spatio-temporal graph convolutional neural network for human trajectory prediction[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 14412‐14420.
|
16 |
ZHAOX, CHENY, GUOJ, et al. A spatial-temporal attention model for human trajectory prediction[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(4): 965‐974.
|
17 |
WANGC X, CAIS F, TANG. Graphtcn: Spatio-temporal interaction modeling for human trajectory prediction[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 3450‐3459.
|
18 |
PELLEGRINIS, ESS A, SCHINDLERK, VAN GOOLL. You'll never walk alone: Modeling social behavior for multi-target tracking[C]//2009 IEEE 12th International Conference on Computer Vision. Kyoto: IEEE, 2009: 261‐268.
|
19 |
LERNERA, CHRYSANTHOUY, LISCHINSKID. Crowds by example[J]. Computer Graphics Forum, 2007, 26(3): 655‐664.
|
20 |
KOSARAJUV, SADEGHIANA, MARTÍN-MARTÍNR, et al. Social-bigat: Multimodal trajectory forecasting using bicycle-GAN and graph attention networks[C]//Proceedings of Annual Conference on Neural Information Processing Systems. Vancouver: NeurIPS, 2019: 1‐10.
|