电子学报 ›› 2022, Vol. 50 ›› Issue (3): 513-523.DOI: 10.12263/DZXB.20210329

• 学术论文 •    下一篇

抗主瓣多假目标欺骗干扰EPC-MIMO波形自适应优化设计技术

张洋1,2, 位寅生1,2, 于雷1,2   

  1. 1.哈尔滨工业大学电子信息工程学院, 黑龙江 哈尔滨 150001
    2.工业与信息化部对海监测与信息处理重点实验室, 黑龙江 哈尔滨 150001
  • 收稿日期:2021-03-09 修回日期:2021-06-17 出版日期:2022-03-25 发布日期:2022-03-25
  • 作者简介:张 洋 男,1994年生于江苏淮安.现为哈尔滨工业大学电子与信息工程学院博士研究生.主要研究方向为新体制雷达波形设计、抗主瓣干扰波形设计. E-mail:814823859@qq.com
    位寅生 男,1974年生于黑龙江省.现为哈尔滨工业大学电子与信息工程学院党委书记兼副院长,教授,博士生导师.主要研究方向为抗干扰波形设计、抗干扰与抗杂波雷达信号体制、毫米波雷达探测技术研究等. E-mail:weiys@hit.edu.cn
    于 雷 男,1981年生于河南安阳.现为哈尔滨工业大学电子与信息工程学院副教授.主要研究方向为信号处理理论、认知雷达波形设计、机器学习、神经网络等人工智能技术在目标识别和干扰对抗中的应用. E-mail:yu.lei@hit.edu.cn
  • 基金资助:
    国家自然科学基金企业创新发展联合基金(U20B2041)

Adaptive Optimization Design Technology of EPC-MIMO Waveform Against Mainlobe Multiple False Targets Deception Jamming

ZHANG Yang1,2, WEI Yin-sheng1,2, YU Lei1,2   

  1. 1.School of Electronics and Information Engineering,Harbin Institute of Technology,Harbin,Heilongjiang 150001,China
    2.Key Laboratory of Marine Environmental Monitoring and Information Processing,Ministry of Industry and Information Technology,Harbin,Heilongjiang 150001,China
  • Received:2021-03-09 Revised:2021-06-17 Online:2022-03-25 Published:2022-03-25

摘要:

本文针对主瓣多假目标欺骗干扰对抗的难题,提出一种基于阵元脉冲编码多输入多输出(Element-Pulse Coding Multiple-Input Multiple-Output,EPC-MIMO)波形自适应设计的干扰抑制方法.阵元脉冲编码技术可在不影响真目标回波特性前提下,调整假目标在发射频率域的能量分布.利用这一特性,本文以真假目标空域相关性极小化为优化目标设计EPC-MIMO波形,使假目标能量分布于真目标空域检测区域外, 进而在接收端通过数字波束形成实现假目标的有效抑制.此外,由于EPC-MIMO波形的自适应设计需要对干扰进行认知,本文还提出一种基于EPC-MIMO波形的干扰快速认知方法.仿真实验验证了所提方法的有效性.

长摘要
随着数字射频存储器技术的快速发展,干扰机可通过对雷达信号存储转发,在主瓣形成密集假目标,降低了目标估计精度与跟踪准确性,对传统雷达提出了严峻的挑战。针对这一主瓣多假目标干扰的对抗难题,本文提出一种基于阵元脉冲编码多输入多输出(ElementPulse Coding Multiple-Input Multiple-Output,EPC-MIMO)波形自适应设计的干扰抑制与认知方法。阵元脉冲编码是指对MIMO雷达不同通道辐射的不同脉冲初相进行编码,可充分调用雷达阵元与脉冲二维优化资源,在不影响目标回波空域分布特性前提下,自适应调整假目标空域能量分布。利用该特性,本文首先以假目标能量在空域检测区域内极小化为优化目标设计EPC-MIMO波形,其物理意义为将假目标移出目标主瓣区域,实现真假目标空域解耦。进而,通过数字波束形成处理,可在无信噪比损失情况下实现假目标有效抑制。此外,鉴于EPC-MIMO 波形的自适应设计需要干扰先验信息,本文还提出一种基于随机EPC-MIMO波形的干扰快速认知方法,在少量脉冲重复周期内即实现假目标先验知识的获取,从而形成干扰认知-波形设计闭环系统。仿真实验验证了所提波形设计方法在低信干比、多假目标场景下依旧具备稳健的干扰抑制性能,所提干扰认知方法可在较短时间内准确获取干扰参数,满足战场实时性要求。

关键词: 雷达抗干扰, 认知雷达, 多输入多输出雷达, 波形设计, 相位编码, 阵元脉冲编码, 主瓣欺骗干扰, 数字波束形成

Abstract:

A multiple false targets deception jamming suppression method based on the optimization design of the element-pulse coding multiple-input multiple-output(EPC-MIMO) waveform is proposed. EPC can change the energy distribution of false targets in the transmitting frequency domain but not affect the true target. Using this feature, this paper optimizes the EPC-MIMO waveform with the objective function of minimizing the spatial correlation between the real and false targets. It can distribute the jamming energy outside the target airspace detection area. And then false targets can be effectively suppressed at the receiving end by digital beam forming. At the same time, since this method is realized under the condition of jamming cognition, this paper also proposes a fast jamming cognition method based on EPC-MIMO waveform to form a waveform design-jamming cognition closed-loop system. Simulation experiments verify the effectiveness of the proposed methods.

Extended Abstract
With the rapid development of digital radio frequency memory (DRFM) technology, the jammer can form dense false targets in the mainlobe of radar by storing and forwarding radar signals. It reduces the target estimation and tracking accuracy, posing a serious challenge to traditional radar systems. To address the countermeasure problem of mainlobe multiple false target jamming, this paper proposes a jamming suppression and cognition method based on adaptive element-pulse coding multiple-input multiple-output (EPC-MIMO) waveform design. EPC refers to the coding of different pulse initial phases radiated by different channels of MIMO radar. It can make full use of radar two-dimensional anti-jamming resources, including array elements and pulses, to adaptively adjust the spatial energy distribution of false targets. At the same time, it will not affect the spatial distribution characteristics of the target echo. Using this feature, this paper first designs the EPC-MIMO waveform with the optimization objective of minimizing the false target energy in the spatial detection region. Its physical significance is to move the false target out of the target mainlobe region and achieve the decoupling of true and false targets in the spatial domain. Then, through digital beamforming (DBF) processing, false targets can be effectively suppressed without signal-to-noise ratio (SNR) loss. In addition, since the adaptive design of the EPC-MIMO waveform requires jamming prior information, this paper also proposes a fast jamming cognition method based on random EPC-MIMO waveform. It realizes the acquisition of a priori knowledge of false targets within a small number of pulse repetition intervals (PRI), resulting in a closed-loop system for jamming cognition-waveform design. Simulation results verify that the proposed waveform design method still performs robust jamming suppression in low signal-to-jamming ratio and multiple false target scenarios. And the proposed jamming cognition method can accurately acquire jamming parameters in a short time to meet the real-time battlefield requirements.

Key words: radar anti-jamming, cognitive radar, multiple-input multiple-output radar, waveform design, phase coding, element-pulse coding, mainlobe deception jamming, digital beam forming

中图分类号: