1 |
GELMAN A, CARLIN J B, STERN H S, et al. Bayesian Data Analysis[M]. New York: Chapman and Hall/CRC, 1995.
|
2 |
DE-GEETER J, VAN-BRUSSEL H, DE-SCHUTTER J, et al. A smoothly constrained Kalman filter[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(10): 1171-1177.
|
3 |
JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422.
|
4 |
ARASARATNAM I, HAYKIN S, ELLIOTT R J. Discrete-time nonlinear filtering algorithms using Gauss-hermite quadrature[J]. Proceedings of the IEEE, 2007, 95(5): 953-977.
|
5 |
GARCIA-FERNANDEZ Á F, MORELANDE M R, GRAJAL J. Truncated unscented Kalman filtering[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3372-3386.
|
6 |
ANDRIEU C, DE-FREITAS N, DOUCET A, et al. An introduction to MCMC for machine learning[J]. Machine Learning, 2003, 50(1/2): 5-43.
|
7 |
BUGALLO M F, ELVIRA V, MARTINO L, et al. Adaptive importance sampling: The past, the present, and the future[J]. IEEE Signal Processing Magazine, 2017, 34(4): 60-79.
|
8 |
DOUCET A, GODSILL S, ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000, 10(3): 197-208.
|
9 |
XIE W X, BEDROSIAN S D. An information measure for fuzzy sets[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1984, SMC-14(1): 151-156.
|
10 |
SIMON D. Kalman filtering with state constraints: A survey of linear and nonlinear algorithms[J]. IET Control Theory & Applications, 2010, 4(8): 1303-1318.
|
11 |
BAR-SHALOM Y, LI X R, KIRUBARAJAN T. Estimation with Applications to Tracking and Navigation[M]. New York: John Wiley & Sons, Inc, 2001.
|
12 |
TRONARP F, GARCÍA-FERNÁNDEZ Á F, SÄRKKÄ S. Iterative filtering and smoothing in nonlinear and non-Gaussian systems using conditional moments[J]. IEEE Signal Processing Letters, 2018, 25(3): 408-412.
|
13 |
VAN-DER-MERWE R, DOUCET A, DE-FREITAS N, et al. The unscented particle filter[J]. Advances in Neural Information Processing Systems, 2000, 13: 584-590.
|
14 |
ELVIRA V, MARTINO L, CLOSAS P. Importance Gaussian quadrature[J]. IEEE Transactions on Signal Processing, 2021, 69: 474-488.
|
15 |
GARCIA-FERNANDEZ Á F, MORELANDE M R, GRAJAL J. Truncated unscented Kalman filtering[J].IEEE Transactions on Signal Processing, 2012, 60(7): 3372-3386.
|
16 |
KIRUBARAJAN T, BAR-SHALOM Y. Kalman filter versus IMM estimator: When do we need the latter?[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1452-1457.
|
17 |
HOSTETTLER R, SÄRKKÄ S. Rao-blackwellized Gaussian smoothing[J]. IEEE Transactions on Automatic Control, 2019, 64(1): 305-312.
|
18 |
王琪, 廖志忠, 燕飞. 基于 Rao-Blackwellised 粒子滤波的相控阵导引头指向误差斜率在线估计[J]. 电子与信息学报, 2021, 43: 1-8.
|
|
WANG Q, LIAO Z Z, YAN F. Online estimation for phased array seeker pointing error slope using rao-blackwellised particle filters[J]. Journal of Electronics and Information Technology, 2021, 43: 1-8. (in Chinese)
|
19 |
ZHANG H W, XIE W X. Constrained unscented Kalman filtering for bearings-only maneuvering target tracking[J]. Chinese Journal of Electronics, 2020, 29(3): 501-507.
|
20 |
LIU C J, LI B B, CHEN W H. Particle filtering with soft state constraints for target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 3492-3504.
|
21 |
蒋林, 向超, 朱建阳, 等. 加载语义似然估计的粒子滤波重定位[J]. 电子学报, 2021, 49(2): 306-314.
|
|
JIANG L, XIANG C, ZHU J Y, et al. Particle filter relocation with semantic likelihood estimation[J]. Acta Electronica Sinica, 2021, 49(2): 306-314. (in Chinese)
|
22 |
仇祝令, 查宇飞, 吴敏, 等. 基于注意力学习的正则化相关滤波跟踪算法[J]. 电子学报, 2020, 48(9): 1762-1768.
|
|
QIU Z L, ZHA Y F, WU M, et al. Learning attentional regularized correlation filter for visual tracking[J]. Acta Electronica Sinica, 2020, 48(9): 1762-1768. (in Chinese)
|
23 |
AFTAB W, MIHAYLOVA L. A learning Gaussian process approach for maneuvering target tracking and smoothing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 57(1): 278-292.
|
24 |
RONG LI X. Compatibility and modeling of constrained dynamic systems[C]//2016 19th International Conference on Information Fusion(FUSION). New York, USA: IEEE, 2016: 240-247.
|
25 |
中山大学. 一种基于贝叶斯序贯重要性积分的卡尔曼滤波方法: CN202110720593.9[P]. 2021-9-28.
|
26 |
PENG J T, GUO L, HU Y, et al. Maximum correntropy criterion based regression for multivariate calibration[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 161: 27-33.
|