
太赫兹波导封装技术的研究与应用
The Study and Application of Terahertz Waveguide Package
对太赫兹波导封装技术进行研究,并在D波段(110~170GHz)和220GHz频段分别进行设计验证.通过金丝键合技术对研制的D波段放大器芯片进行波导封装设计,封装测试结果为:封装模块在139GHz测试得到最大增益为10.8dB,在137~144GHz频率范围内,增益大于7.8dB,输入端回波损耗优于5dB,输出端回波损耗优于8.5dB.封装与在片测试结果曲线变化趋势基本一致,但是封装后芯片性能恶化严重,封装损耗大于5dB.基于此,开展太赫兹波导-集成探针过渡结构研究,提出一种适用于太赫兹频段的波导-集成探针过渡结构,并在220GHz频段进行设计验证.模块测试结果为:在208~233GHz频带范围内,插入损耗优于3dB,回波损耗优于8dB,在224GHz频点处,获得该结构的最优性能,其插入损耗为1.3dB,回波损耗为46.4dB.该波导-集成探针过渡结构为太赫兹频段全集成芯片研制提供了经验.
Research on terahertz waveguide packaging technology and design verification in D-band (110~170GHz) and 220GHz band, respectively. Based on the wire bonding method, D-band LNA module is developed with self-designed amplifier chip. The module measurement shows the peak gain is 10.8dB at 139GHz,the gain higher than 7.8dB from 137GHz to 144GHz, the measured input return loss and output return loss are better than 5 dB and 8.5dB in operating frequencies, respectively. The tendency of packaged curve is same as the on-chip measured and its value is worse than the on-chip measurement about 5dB. A waveguide-to-integrated probe transition structure for terahertz band is proposed and verified in 220GHz. The module measurement shows the return loss is better than 8dB and the insertion loss is better than 3dB during 208GHz to 233GHz and the best performance is achieved at 224GHz with insertion loss is 1.3dB and return loss is 46.4dB. The waveguide-to-integrated probe transition structure provides experience for development of fully integrated terahertz chip.
太赫兹 / 波导封装 / 放大器 / 金丝键合 / 波导-集成探针过渡 {{custom_keyword}} /
terahertz / waveguide package / amplifier / wire bonding / waveguide-to-integrated probe transition {{custom_keyword}} /
1 |
胡林林, 曾造金, 陈洪斌, 等. 毫米波/太赫兹扩展互作用速调管放大器的应用及研究进展[J]. 电子学报, 2019, 47(1): 211‐219.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
姚常飞, 周明, 罗运生, 等. 基于肖特基势垒二极管的太赫兹固态倍频源和检测器研制[J]. 电子学报, 2013, 41(3): 438‐443.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
刘松卓, 于伟华, 邓长江, 等. 面向通信系统的太赫兹调制技术进展现状[J]. 无线电通信技术, 2021, 47(1): 44‐50.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
张开春. 太赫兹扩展互作用振荡器的矩形耦合腔特性研究[J]. 电子学报, 2011, 39(3): 632‐635.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
胡林林, 蔡金赤, 陈洪斌. 太赫兹返波振荡器的应用及研究进展[J]. 电子学报, 2016, 44(4): 974‐982.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
吴振华, 张开春, 刘盛纲. 折叠波导结构的THz振荡辐射源研究[J]. 电子学报, 2009, 37(12): 2677‐2680.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
陈浩. W波段分谐波混频器设计[D]. 南京: 东南大学, 2004.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |