1 |
JIN D, YOU X X, LI W H, et al. Incorporating network embedding into Markov random field for better community detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33: 160-167.
|
2 |
陈洁, 李锐, 赵姝, 等. 面向图表示社区检测的新型聚类覆盖算法[J]. 电子学报, 2020, 48(9): 1680-1687.
|
|
CHEN J, LI R, ZHAO S, et al. A new clustering cover algorithm based on graph representation for community detection[J]. Acta Electronica Sinica, 2020, 48(9): 1680-1687. (in Chinese)
|
3 |
MATSUGU S, SHIOKAWA H, KITAGAWA H. Fast algorithm for attributed community search[J]. Journal of Information Processing, 2021, 29: 188-196.
|
4 |
潘剑飞, 董一鸿, 陈华辉, 等. 基于结构紧密性的重叠社区发现算法[J]. 电子学报, 2019, 47(1): 145-152.
|
|
PAN J F, DONG Y H, CHEN H H, et al. The overlapping community discovery algorithm based on compact structure[J]. Acta Electronica Sinica, 2019, 47(1): 145-152. (in Chinese)
|
5 |
马慧芳, 陈海波, 赵卫中, 等. 融合标签平均划分距离和结构关系的微博用户可重叠社区发现[J]. 电子学报, 2018, 46(11): 2612-2618.
|
|
MA H F, CHEN H B, ZHAO W Z, et al. Leveraging tag mean partition distance and social structure for overlapping microblog user community detection[J]. Acta Electronica Sinica, 2018, 46(11): 2612-2618. (in Chinese)
|
6 |
LEE J Y, LEE J. Hidden information revealed by optimal community structure from a protein-complex bipartite network improves protein function prediction[J]. PLoS One, 2013, 8(4): e60372.
|
7 |
FANG Y X, HUANG X, QIN L, et al. A survey of community search over big graphs[J].The VLDB Journal, 2020, 29(1): 353-392.
|
8 |
AGHAALIZADEH S, AFSHORD S T, BOUYER A, et al. A three-stage algorithm for local community detection based on the high node importance ranking in social networks[J]. Physica A: Statistical Mechanics and Its Applications, 2021, 563: 125420.
|
9 |
於志勇, 陈基杰, 郭昆, 等. 基于影响力与种子扩展的重叠社区发现[J]. 电子学报, 2019, 47(1): 153-160.
|
|
YU Z Y, CHEN J J, GUO K, et al. Overlapping community detection based on influence and seeds extension[J]. Acta Electronica Sinica, 2019, 47(1): 153-160. (in Chinese)
|
10 |
AKOGLU L, TONG H H, MEEDER B, et al. PICS: parameter-free identification of cohesive subgroups in large attributed graphs[C]//Proceedings of the 2012 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2012: 439-450.
|
11 |
SHANG J W, WANG C K, WANG C P, et al. An attribute-based community search method with graph refining[J].The Journal of Supercomputing, 2020, 76(10): 7777-7804.
|
12 |
LIU H J, MA H F, CHANG Y, et al. Leveraging User Preferences for Community Search via Attribute Subspace[M]//Knowledge Science, Engineering and Management. Cham: Springer International Publishing, 2019: 584-595.
|
13 |
FANG Y X, CHENG R, LUO S Q, et al. Effective community search for large attributed graphs[J]. Proceedings of the VLDB Endowment, 2016, 9(12): 1233-1244.
|
14 |
LIU Q, ZHU Y F, ZHAO M J, et al. VAC: vertex-centric attributed community search[C]//2020 IEEE 36th International Conference on Data Engineering. Piscataway: IEEE, 2020: 937-948.
|
15 |
YE W, MAUTZ D, BÖHM C, et al. Incorporating user's preference into attributed graph clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(12): 3716-3728.
|
16 |
PEROZZI B, AKOGLU L, SÁNCHEZ P I, et al. Focused clustering and outlier detection in large attributed graphs[C]//KDD'14: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. New York, USA: ACM, 2014: 1346-1355.
|
17 |
WU P, PAN L. Mining target attribute subspace and set of target communities in large attributed networks[EB/OL]. (2017-05-10). .
|
18 |
LI Y, SHA C F, HUANG X, et al. Community detection in attributed graphs: An embedding approach[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 338-345
|
19 |
DE MÁNTARAS R L. A distance-based attribute selection measure for decision tree induction[J].Machine Learning, 1991, 6(1): 81-92.
|
20 |
马慧芳, 张迪, 赵卫中, 等. 基于超图随机游走标签扩充的微博推荐方法[J]. 软件学报, 2019, 30(11): 3397-3412.
|
|
MA H F, ZHANG D, ZHAO W Z, et al. Microblog recommendation method based on hypergraph random walk tag extension[J]. Journal of Software, 2019, 30(11): 3397-3412. (in Chinese)
|
21 |
SEIDMAN S B. Network structure and minimum degree[J]. Social Networks, 1983, 5(3): 269-287.
|
22 |
EBADIAN S, HUANG X. Fast algorithm for K-truss discovery on public-private graphs[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2019: 2258-2264.
|
23 |
WU J, LI C M, JIANG L, et al. Local search for diversified Top-k clique search problem[J]. Computers & Operations Research, 2020, 116: 104867.
|
24 |
GIATSIDIS C, BERBERICH K, THILIKOS D M, et al. Visual exploration of collaboration networks based on graph degeneracy[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM,2012: 1512-1515.
|
25 |
AYDIN K, BATENI M, MIRROKNI V. Distributed balanced partitioning via linear embedding[C]//WSDM'16: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. New York, USA: ACM,2016: 387-396.
|