[1] Pavelka J.On fuzzy logic(I,Ⅱ,Ⅲ)[J].Zeitschrf Math Logik und Grundlagender Math,1979,25:45-52;119-134;447-464.
[2] 王国俊.计量逻辑学(I)[J].工程数学学报,2006,23(2):191-215. Wang Guo-Jun.Quantitative logic(I)[J].Chinese Journal of Engineering Mathematics,2006,23(2):191-215.(in Chinese)
[3] 吴洪博,周建仁.命题逻辑系统R0 L3n+1中公式的Γ-真度及性质[J].计算机学报,2015,38(8):1672-1679. Wu Hong-Bo,Zhou Jian-Ren.The Γ-truth degree of formulas in propositional logic system R0 L3n+1 with properties[J].Chinese Journal of Computers,2015,38(8):1672-1679.(in Chinese)
[4] 惠小静,王国俊.经典推理模式的随机化研究及其应用[J].中国科学:E辑,2007,37(6):801-812. Hui Xiao-Jing,Wang Guo-Jun.Randomization of classical inference patterns and its application[J].Science in China(Series E),2007,37(6):801-812.(in Chinese)
[5] 崔美华.n值Lukasiewicz命题逻辑系统中公式的随机真度及近似推理[J].应用数学学报,2012,35(2):209-220. Cui Mei-Hua.The randomized truth degree of formulas and approximate reasoning in n-valued Lukasiewicz propositional logic system[J].Chinese Journal of Engineering Mathematics,2012,35(2):209-220.(in Chinese)
[6] Esteva F,Godo L,Hájek P,et al.Residuated fuzzy logics with an involutive negation[J].Arch Math Logic,2000,39:103-124.
[7] Flaminio T,Marchioni E.T-norm based logics with an independent an involutive negation[J].Fuzzy Set Syst,2006,157:3125-3144.
[8] Baaz M.Infinite-valued Gødel logic with 0-1 projections and relativisations[J].Comput Sci Phys Lect Notes Logic,1996,6:23-33.
[9] Cintula P,Klement E P,Mesiar R,et al.Fuzzy logics with an additional involutive negation[J].Fuzzy Set Syst,2010,161:390-411.
[10] 惠小静.基于真值的SBL~公理化扩张系统的计量化[J].中国科学:信息科学,2014,44(7):900-911. Hui Xiao-Jing.Quantified axiomatic extension systems of SBL~based on truth value[J].Science in China:Information Science,2014,44(7):900-911.(in Chinese) |