[1] Vapnik V.The Nature of Statistical Learning Theory[M].New York:Wiley,1998.
[2] 王友卫,刘元宁,凤丽洲,等.基于用户兴趣集的在线垃圾邮件快速识别新方法[J].电子学报,2015,43(10):1963-1970. WANG Y W,LEU Y N,et al.A novel quick online spam identification method based on user interest set[J].Acta Electronica Sinica,2015,43(10):1963-1970.(in chinese)
[3] Shafiabady N,Lee L H,Rajkumar R,et al.Using unsupervised clustering approach to train the support vector machine for text classification[J].Neurocomputing,2016,211:4-10.
[4] Shao Y H,Chen W J,Wang Z,et al.Weighted linear loss twin support vector machine for large-scale classification[J].Knowledge-Based Systems,2015,73:276-288.
[5] Japkowic Z N,Stephen S.The class imbalance problem:A systematic study[J].Intelligent Data Analysis,2002,6(5):429-449.
[6] Chawla N V,Bowyer K W,Hall L O,et al.SMOTE:synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2002,16(1):321-357.
[7] Drummond C,Holte R C.C4.5,class imbalance,and cost sensitivity:why under-sampling beats over-sampling[A].Workshop on Learning from Imbalanced Datasets Ⅱ[C].Washington DC:Citeseer,2003:1-8.
[8] Kubat M,Matwin S.Addressing the curse of imbalanced training sets:one-sided selection[A].Proc 14th ICML[C].Nashville:Morgan Kaufmann Publishers,1997.179-186.
[9] Sain H,Purnami S W.Combine sampling support vector machine for imbalanced data classification[J].Procedia Computer Science,2015,72(1):59-66.
[10] Zhang Y,Fu P,Liu W,et al.Imbalanced data classification based on scaling kernel-based support vector machine[J].Neural Computing and Applications,2014,25(3-4):927-935.
[11] Maldonado S,López J.Imbalanced data classification using second-order cone programming support vector machines[J].Pattern Recognition,2014,47(5):2070-2079.
[12] Datta S,Das S.Near-bayesian support vector machines for imbalanced data classification with equal or unequal misclassification costs[J].Neural Networks,2015,70:39-52.
[13] Jian C,Gao J,Ao Y.A new sampling method for classifying imbalanced data based on support vector machine ensemble[J].Neurocomputing,2016,193:115-122.
[14] Wang X,Huang F,Cheng Y.Super-parameter selection for gaussian-kernel SVM based on outlier-resisting[J].Measurement,2014,58:147-153.
[15] Mirjalili S.SCA:a sine cosine algorithm for solving optimization problems[J].Knowledge-Based Systems,2016,96:120-133.
[16] Eberhart R C,Kennedy J.A new optimizer using particle swarm theory[A].Proc.Sixth International Symposium on MICRO Machine and Human Science[C].Nagoya,Japan:IEEE Press,2002.39-43.
[17] Karaboga D.An idea based on honey bee swarm for numerical optimization[R].Kayseri:Erciyes University,Engineering Faculty,Computer Engineering Department,2005.
[18] Mirjalili S,Mirjalili S M,Hatamlou A.Multi-verse optimizer:a nature-inspired algorithm for global optimization[J].Neural Computing and Applications,2016,27(2):495-513.
[19] Fernández A,García S,del Jesus M J,et al.A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets[J].Fuzzy Sets and Systems,2008,159(18):2378-2398.
[20] Chang C C,Lin C J.LIBSVM:a library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology (TIST),2011,2(3):27. |