[1] Bo L F,Wang L L,Jiao C.Training hard-margin support vector machines using greedy stagewise algorithm[J].IEEE Trans.Neural Networks,2008,19(8):1446-1455.
[2] Fine S,Scheinberg K.Efficient SVM training using low-rank kernel representations[J].The Journal of Machine Learning Research,2001,2(3):243-264.
[3] Ni T G,Chung F L,Wang S T.Support vector machine with manifold regularization and partially labeling privacy protection[J].Information Sciences,2015,294(10):390-407.
[4] Tsang I W,Kwok J T,Cheung P M.Core vector machines:fast SVM training on very large data sets[J].The Journal of Machine Learning Research,2005,6(12):363-392.
[5] 胡文军,王士同.隐私保护的SVM快速分类方法[J].电子学报,2012,40(2):280-286. Hu Wenjun,Wang Shitong.Fast classification approach support vector machine with privacy preservation[J].Acta Electronica Sinica,2012,40(2):280-286.(in Chinese)
[6] Wang S T,Wang J,Chung F L.Kernel density estimation,kernel methods,and fast learning in large data sets[J].IEEE Trans.Cybernetics,2014,44(1):1-20.
[7] Nandan M,Khargonekar P P,Talathi S S.Fast SVM training using approximate extreme points[J].Journal of Machine Learning Research,2014,15:59-98.
[8] Kim W,Stankovc M S,Johansson K H,et al.A distributed support vector machine learning over wireless sensor networks[J].IEEE Trans Cybernetics,2015,45(11):2599-2611.
[9] Batuwita R,Palade V.FSVM-CIL:fuzzy support vector machines for class imbalance learning[J].IEEE Trans Fuzzy Systems,2010,18(3):558-571.
[10] Wang Y,Wang S,Lai K.A new fuzzy support vector machine to evaluate credit risk[J].IEEE Trans Fuzzy System,2005,13(6):820-831.
[11] An W J,Liang M G.Fuzzy support vector machine based on within-class scatter for classification problems with outliers or noises[J].Neurocomputing,2013,110(6):101-110.
[12] Huang X L,Shi L,Pelckmansb K,Suykens J A K.Asymmetric ν -tube support vector regression[J].Computational Statistics and Data Analysis,2014,77:371-382.
[13] Huang X L,Shi L,Suykens J A K.Support vector machine classifier with pinball loss[J].IEEE Trans Pattern Analysis and Machine Intelligence,2014,36(5):984-997.
[14] He X Y,Mourot G,Maquin D,et al.Multi-task learning with one-class SVM[J].Neurocomputing,2014,133:416-426.
[15] Wang D,Qiao H,Zhang B,et al.Online support vector machine based on convex hull vertices selection[J].IEEE Trans.Neural Networks and Learning Systems,2013,24(4):593-609.
[16] Dattorro J.Convex Optimization and Euclidean Distance Geometry[M].Mεβoo Publishing USA,2015.
[17] Blum M,Floyd R W,Pratt V R,et al.Time bounds for selection[J].Journal of Computer and System Sciences,1973,7(4):448-461.
[18] Xua J,Jiang Y X,Zeng C Q,et al.Node anomaly detection for homogeneous distributed environments[J].Expert Systems with Applications,2015,42(20):7012-7025.
[19] Tax D M J,Duin R P W.Support vector data description[J].Machine Learning,2004,54(1):45-66.
[20] Takahashi N,Nishi T.Rigorous proof of termination of SMO algorithm for support vector machines[J].IEEE Trans Neural Network,2005,16(3):774-776.
[21] Tsang I,Kwok A,Kwok J.Simpler core vector machines with enclosing balls[A].International conference on Machine learning[C].Corvallis,USA,2007.911-918.
[22] Bache K,Lichman M.UCI database[DB/OL].http://www.ics.uci.edu/%20mlearn/MLRepository.html.
[23] Luukka P,Lampinen J.Differential evolution classifier in noisy settings and with interacting variables[J].Applied Soft Computing,2011,11:891-899.
[24] Chang C,Lin C.LIBSVM:A library for support vector machines[J].ACM Trans Intelligence and System Technology,2011,2(3):1-27. |