[1] 周红军,王国俊.Borel型概率计量逻辑[J].中国科学:信息科学,2011,41(11):1328-1342. ZHOU Hong-jun,WANG Guo-jun.Borel probabilistic quantitative logic[J].Science China:Information Science,2011,41(11):1328-1342.(in Chinese)
[2] 周红军,折延宏.Lukasiewicz命题逻辑中命题的choquet积分真度理论[J].电子学报,2013,42(12):2327-2333. ZHOU Hong-jun,SHE Yan-hong.Theory of choquet integral truth degrees of propositions in Lukasiewicz propositional logic[J].Acta Electronica Sinica,2013,42(12):2327-2333.(in Chinese)
[3] WANG Guo-jun,FU Li,SONG Jian-she.Theory of truth degrees of propositions in two-valued logic[J].Science in China (Series A),2002,45(9):1106-1116.
[4] LI Bi-jing,WANG Guo-jun.Theory of truth degrees of formulas in Lukasiewicz n-valued propositional logic and a limit theorem[J].Science in China (Series F),2005,48(6):727-738.
[5] 李俊,王国俊.逻辑系统Ln*中命题的真度理论[J].中国科学(E辑),2006,36(6):631-643. LI Jun,WANG Guo-jun.Theory of truth degrees of proposition in logic sysem Ln*[J].Sciencein China (E),2006,36(6):631-643.(in Chinese)
[6] 时慧娴,王国俊.多值模态逻辑的计量化方法[J].软件学报,2012,23(12):3083-3087. SHI Hui-xian,WANG Guo-jun.Quantitative method for multi-value modal logics[J].Journal of Software,2012,23(12):3083-3087.(in Chinese)
[7] 王国俊.一类一阶逻辑公式中的公理化真度理论及其应用[J].中国科学(F),2012,42(5):648-662. WANG Guo-jun.Axiomatic theory of truth degree for a class of first-order formulas and its application[J].Science in China (F),2012,42(5):648-662.(in Chinese)
[8] WANG Guo-jun,ZHOU Hong-jun.Quantitative logic[J].Information Science,2009,179(3):226-247.
[9] 李骏,邓富喜.n值S-MTL命题逻辑系统中公式真度的统一理论[J].电子学报,2011,39(8):1864-1868. LI Jun,DENG Fu-gui.Unified theory of truth degrees in n-valueds-MTL propositional logic[J].Acta Electronica Sinica,2011,39(8):1864-1868.(in Chinese)
[10] 李骏,姚锦涛.命题逻辑系统SMTL中公式的积分真度理论[J].电子学报,2013,41(5):878-883. LI Jun,YAO Jin-tao.Theory of integral truth degrees of formula in SMTL propositional logic[J].Acta Electronica Sinica,2013,41(5):878-883.(in Chinese)
[11] 周红军.概率计量逻辑及其应用[M].北京:科学出版社,2015.
[12] 雷英杰,赵杰,等.直觉模糊集理论及其应用[M].北京:科学出版社,2014.
[13] 陈水利,李敬功,王向公.模糊集理论及其应用[M].北京:科学出版社,2005.
[14] Roser J B,Turquette A R.Many-Valued Logic[M].Amsterdam:North-Holland,1952.
[15] Pavelka J.logic:I-Ⅲ[J].On Fuzzy Zeitschrift Für Mathematische Logic and Grundlagen Mathematik,1979,25(2):45-52;119-134;447-464.
[16] Adams E W.A Prime of Probability Logic[M].Stanford:CSLIPublications,1998.
[17] Dubois D,Prade H.Possibility theory,probability theory and multiple-valued logics:a clarification[J].Annals of Mathematics and Artificial Intelligence,2001,32(1-4):35-66.
[18] 王国俊.修正的KLeene系统中的∑-α-重言式理论[J].中国科学(E辑),1998,28(2):146-152. WANG Guo-jun.The theory of ∑-α-tautologies in the revised Kleene system[J].Science in China (Series E),1998,28(2):146-152.(in Chinese)
[19] 王庆平,王国俊.多值Lukasiewicz逻辑公式的范数表示和计数问题[J].软件学报,2013,24(3):433-453. WANG Qing-ping,WANG Guo-jun.Normal form of Lukasiewicz logic formula and related counting problems[J].Journal of Software,2013,24(3):433-453.(in Chinese)
[20] 折延宏,王国俊.三值命题逻辑系统L3*逻辑理论性态的拓扑刻画[J].数学学报,2009,52(6):1225-1235. SHE Yan-hong,WANG Guo-jun.Topological characterizations of properties of logic theories in three-valued propositional logic system L3*[J].2009,52(6):1225-1235.(in Chinese) |