电子学报 ›› 2018, Vol. 46 ›› Issue (12): 2824-2831.DOI: 10.3969/j.issn.0372-2112.2018.12.002

• 学术论文 • 上一篇    下一篇

状态不可观测的信息物理融合系统运行时验证

房丙午1,2, 黄志球1, 王勇1, 李勇1   

  1. 1. 南京航空航天大学计算机科学与技术学院, 江苏南京 210016;
    2. 安徽财贸职业学院云桂信息学院, 安徽合肥 230061
  • 收稿日期:2018-05-03 修回日期:2018-07-15 出版日期:2018-12-25
    • 通讯作者:
    • 黄志球
    • 作者简介:
    • 房丙午 男,1974年生于安徽枞阳.现为南京航空航天大学计算机科学与技术学院博士研究生,副教授.主要研究方向软件工程、软件系统安全性分析.E-mail:bingwufang@163.com
    • 基金资助:
    • 国家重点研发计划 (No.2016YFB1000802); 国家自然科学基金资助项目 (No.61772270); 安徽省高校自然科学基金重点项目 (No.KJ2017A859); 安徽省高校学科 (专业)优秀拔尖人才学术资助计划 (No.gxbjZD32)

Runtime Verification of States Unobservable Cyber-Physical System

FANG Bing-wu1,2, HUANG Zhi-qiu1, WANG Yong1, LI Yong1   

  1. 1.College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China;
    2.School of YunGui Information, Anhui Finance and Trade Vocational College, Hefei, Anhui 230601, China
  • Received:2018-05-03 Revised:2018-07-15 Online:2018-12-25 Published:2018-12-25
    • Corresponding author:
    • HUANG Zhi-qiu
    • Supported by:
    • National Key Research and Development Program of China (No.2016YFB1000802); National Natural Science Foundation of China (No.61772270); Key Program of Natural Science Foundation for Colleges and Universities in Anhui Province (No.KJ2017A859); University Discipline  (Major) Top-notch Talent Support Program of Anhui Province (No.gxbjZD32)

摘要: 确保信息物理融合系统(Cyber-Physical System,CPS)运行时行为正确性是至关重要的,尤其在航空航天、汽车、核电和医疗等安全攸关领域.本文针对具有随机行为且状态不可观测的CPS,提出一种基于隐马尔科夫模型的运行时安全性验证方法.首先构造状态不可观测的CPS运行时安全性验证框架,该框架通过隐马尔科夫模型表示系统,使用确定性有限自动机规约系统安全属性的否定,两者的乘积自动机作为运行时监控器,从而将CPS运行时安全性验证问题约简到监控器上的概率推断问题.然后,提出一种增量迭代安全性验证算法以及反例生成算法.实验结果表明本文算法和粒子滤波算法相比预测错误率下降了近20%,并且当系统违背安全属性时,本文的方法能给出反例.

关键词: 信息物理融合系统, 运行时验证, 隐马尔科夫模型, 确定性有限自动机, 安全性, 反例

Abstract: Ensuring the correct behavior of cyber physical systems (CPS) at runtime is critical, and it is more so in safety-critical area, such as aerospace, automotive, nuclear power and medical. A method of runtime safety verification based on hidden Markov model (HMM) is proposed for the CPS with stochastic behavior and unobservable states. First, a runtime safety verification framework of the CPS is constructed where the system model is represented by HMM, and the negation of safety property is specified by deterministic finite automaton (DFA), and then the product automata of DFA and HMM is used as a runtime monitor. Thus, the problem of CPS runtime safety verification is reduced into a probabilistic inference problem on the monitor. Second, an incremental iterative safety verification algorithm and a counterexample generation algorithm are proposed. The experimental results show that the prediction error rate of the safety verification algorithm is nearly 20% lower than that of the particle filter algorithm. When the system violates the safety property, the proposed method can product a counterexample which the particle filtering method cannot do.

Key words: cyber-physical system, runtime verification, hidden Markov model, deterministic finite automaton, safety, counter-example

中图分类号: