[1] Indyk P,Motwani R.Approximate nearest neighbors:towards removing the curse of dimensionality[A].Proceedings of the ACM Symposium on Theory of Computing[C].TX,USA:ACM,1998.604-613.
[2] Bentley JL.K-d trees for semi-dynamic pointsets[A].Proceedings of the Sixth Annual Symposium on Computational Geometry[C].Berkeley,Califor-nia,USA:ACM,1990.187-197.
[3] Silpaanan C,Hartley R.Optimised KD-trees forfast image descriptor matching[A].Proceedings ofthe IEEE Conference on Computer Vision and Pattern Recognition[C].Anchorage,Alaska,USA:IEEE,2008.1-8.
[4] Gionis A,Indyk P,Motwani R.Similarity searchin high dimensions via hashing[A].Proceedings of 25th International Conference on Very Large DataBases[C].Edinburgh,Scotland,UK,1999.518-529.
[5] Weiss Y,Torralba A,Fergus R.Spectral hashing[A].Proceedings of the Conference on Neural Information Processing Systems[C].Vancouver,Canada,2008.1753-1760.
[6] Gong Y,Lazebnik S,Gordo A,et al.Iterative quantization:a Procrustean approach to learning binary codes for large-scale image retrieval[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(12):2916-2929.
[7] Kulis B,Darrell T.Learning to Hash with Binary Reconstructive Embeddings[A].Advances in Neural Information Processing Systems[C].Vancouver,Canada,2009.1042-1052.
[8] Liu W,Wang J,Ji R,et al.Supervised hashingwith kernels[A].Proceedings of the Computer Vision and Pattern Recognition[C].Providence,RI,USA:IEEE,2012.2074-2081.
[9] Datar M,Immorlica N,Indyk,et al.Locality-sensitive hashing scheme based on p-stable distributions[A].Proceedings of the Twentieth Annual Symposium on Computational Geometry[C].Brooklyn,NewYork,USA:ACM,2004.253-262.
[10] Kulis B,Grauman K.Kernelized locality sensitive hashing for scalable image search[A].Proceedings of the 12th International Conference on Computer Vision[C].Kyoto,Japan:IEEE,2009.2130-2137.
[11] Kulis B,Jain P,Grauman K.Fastsimilarity search for learned metrics[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(12):2143-2157.
[12] Mu Y,Yan S.Non-metric locality-sensitive Hashing[A].Proceedings of the 24th AAAI Conference on Artificial Intelligence[C].Atlanta,Georgia,USA,2010.2235-2246.
[13] Oliva A,Torralba A.Building the gist of a scene:the role of global image features in recognition[J].Progress in Brain Research,2006,155(2):23-36.
[14] Csurka G,Dance C R,Fan L,et al.Visual categorization with bags of keypoint[J].Workshop on Statistical Learning in Computer Vision ECCV,2004,44(247):1-22.
[15] Sivic J,Zisserman A.Video google:A text retrieval approach to object matching in videos[A].Proceedings of the 9th IEEE International Conference on Computer Vision[C].Nice,France:IEEE,2003.1470-1477.
[16] Krizhevsky A,Sutskever I,Hinton G E.Image-Net classification with deep convolutional neural networks[A].Proceedings of the International Conference on Neural Information Processing Systems[C].Lake Tahoe,USA,2012.1097-1105.
[17] Babenko A,Slesarev A,Chigorin A,et al.Neu-ral Codes for Image Retrieval[A].Proceedings of the European Conference Computer Vision[C].Zürich,Switzerland:ECCV,2014.584-599.
[18] Taigman Y,Yang M,Ranzato M,et al.DeepFa-ce:Closing the gap to human-level performancein face verification[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].Columbus,OH,USA:IEEE,2014.1701-1708.
[19] Sun Y,Wang X,Tang X.Deep learning face representation from predicting 10,000 classes[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].Columbus,OH,USA:IEEE,2014.1891-1898.
[20] Toshev A,Szegedy C.DeepPose:Human pose estimation via deep neural networks[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].Columbus,OH,USA:IEEE,2014.1653-1660.
[21] Xia R,Pan Y,Lai H,et al.Supervised hashingfor image retrieval via image representation learning[A].Proceedings of AAAI Conference on Artificial Intelligence[C].Quebec,Canada,2014.2156-2162.
[22] Lai H,Pan Y,Liu Y,et al.Simultaneous feature learning and hash coding with deep neural networks[A].Proceedings of the Computer Vision and Pattern Recognition[C].Boston,MA,USA:IEEE,2015.3270-3278.
[23] Lin K,Yang H F,Hsiao J H,et al.Deep learning of binary hash codes for fast image retrieval[A].Proceedings of the Computer Vision and Pattern Recognition Workshops[C].Boston,MA,USA:IEEE,2015.27-35.
[24] Szegedy C,Liu W,Jia Y,et al.Going deeper with convolutions[A].Proceedings of the ComputerVision and Pattern Recognition[C].Boston,MA,USA:IEEE,2015.1-9.
[25] He K,Zhang X,Ren S,et al.Deep residual learning for image recognition[A].Proceedings ofthe Computer Vision and Pattern Recognition[C].Las Vegas,Nevada,USA:IEEE,2016.770-778.
[26] Chua T S,Tang J,Hong R,et al.NUS-WIDE:a real-world web image database from National University of Singapore[A].ACM International Conference on Image and Video Retrieval[C].SantorinIsland,Greece:ACM,2009.48. |