电子学报 ›› 2019, Vol. 47 ›› Issue (11): 2299-2303.DOI: 10.3969/j.issn.0372-2112.2019.11.009

• 学术论文 • 上一篇    下一篇

基于MOVR启发式的求差知识编译算法

牛当当1, 吕帅2,3, 王金艳4   

  1. 1. 西北农林科技大学信息工程学院, 陕西杨凌 712100;
    2. 吉林大学计算机科学与技术学院, 吉林长春 130012;
    3. 符号计算与知识工程教育部重点实验室(吉林大学), 吉林长春 130012;
    4. 广西师范大学计算机科学与信息工程学院, 广西桂林 541004
  • 收稿日期:2018-11-02 修回日期:2019-03-22 出版日期:2019-11-25
    • 通讯作者:
    • 牛当当
    • 作者简介:
    • 吕帅 男,1981年7月出生,吉林公主岭人.2010年获得吉林大学博士学位,现为吉林大学计算机科学与技术学院副教授,主要研究方向为人工智能、智能规划与自动推理.E-mail:lus@jlu.edu.cn
    • 基金资助:
    • 国家自然科学基金 (No.61502197,No.61503044,No.61763003,No.61502111); 吉林省科技发展计划资助项目 (No.20180101053JC); 广西省自然科学基金 (No.2016GXNSFAA380192); 西北农林科技大学博士科研启动基金 (No.Z109021813)

Knowledge Compilation Algorithm of Computing Difference Based on MOVR Heuristics

NIU Dang-dang1, Lü Shuai2,3, WANG Jin-yan4   

  1. 1. College of Information Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China;
    2. College of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, China;
    3. Key Laboratory of Symbolic Computation and Knowledge Engineering(Jilin University), Ministry of Education, Changchun, Jilin 130012, China;
    4. School of Computer Science and Information Engineering, Guangxi Normal University, Guilin, Guangxi 541004, China
  • Received:2018-11-02 Revised:2019-03-22 Online:2019-11-25 Published:2019-11-25
    • Corresponding author:
    • NIU Dang-dang
    • Supported by:
    • National Natural Science Foundation of China (No.61502197, No.61503044, No.61763003, No.61502111); Science and Technology Development Project of Jilin Province (No.20180101053JC); Natural Science Foundation of Guangxi Zhuang Autonomous Region,  China (No.2016GXNSFAA380192); Doctoral Research Fund of Northwest A&F University (No.Z109021813)

摘要: DKCHER算法是基于超扩展规则的求差知识编译算法,也是目前为止表现最好的EPCCL理论编译算法.本文通过研究DKCHER算法的执行流程,设计了一种新的启发式策略MOVR(maximum occurrence number of variables in middle result),用于动态地从输入子句集中选择所包含变量在中间结果中出现次数最多的子句.将MOVR启发式策略与DKCHER算法相结合,设计了MOVR_DKCHER算法.实验结果表明,MOVR启发式策略能够显著提高DKCHER算法的编译效率和编译质量,编译效率平均可提升70倍左右,最高可以提高237倍.

关键词: 知识编译, 扩展规则, 超扩展规则, EPCCL理论, 启发式策略

Abstract: DKCHER is a knowledge compilation algorithm of computing difference based on hyper extension rule, which is the best EPCCL compiler so far. We research the executing process of DKCHER algorithm in this paper, and design MOVR (maximum occurrence number of variables in middle result) heuristics, which is used to dynamically select the clause with maximum occurrence number of variables in middle result. By combining MOVR heuristics with DKCHER, MOVR_DKCHER algorithm is designed. Experimentally, MOVR heuristics can significantly improve the compilation efficiency and compilation quality of DKCHER, in which the compilation efficiency of DKCHER can be averagely improved about 70 times, and the improvement can be up to 237 times at most.

Key words: knowledge compilation, extension rule, hyper extension rule, EPCCL theory, heuristic strategy

中图分类号: