[1] CALDERBANK A R,RAINS E M,SHOR PW,SLOANE N J A.Quantum error correction via codes over GF(4)[J].IEEE Transactions on Information Theory,1998,44(4):1369-1387.
[2] ASHIKHMIN A,KNILL E.Nonbinary quantum stabilizer codes[J].IEEE Transactions on Information Theory,2001,47(7):3065-3072.
[3] 施敏加.环F2+uF2+…+uk-1F2上常循环自对偶码[J].电子学报,2013,41(6):1088-1092. SHI Min-jia.Constacyclic self-dual codes over F2+uF2+…+uk-1F2[J].Acta Electronica Sinica,2013,41(6):1088-1092.(in Chinese)
[4] KIM J L.New Quantum error-correcting codes from Herm-itian self-orthogonal codes over GF(4)[A].Proceedings of the Sixth International Conference on Finite Fields with Applications[C].New York:Springer Verlag,2002:209-213.
[5] CARLET C,GUILLEY S.Complementary dual codes for counter-measures to side-channel attacks[A].Coding Theory and Applications[C].Cham:Springer,2015.97-105.
[6] MASSEY J L.Linear codes with complementary duals[J].Discrete Mathematics,1992,106:337-342.
[7] YANG X,MASSEY J L.The condition for a cyclic code to have a complementary dual[J].Discrete Mathematics,1994,126(1-3):391-393.
[8] SENDRIER N.Linear codes with complementary duals meet the Gilbert-Varshamov bound[J].Discrete Mathematics,2004,285(1-3):345-347.
[9] GUNERI C,ÖZKAYA B,SOLE P.Quasi-cyclic comple-mentary dual codes[J].Finite Fields and Their Applications,2016,42:67-80.
[10] CARLET C,MESNAGER S,TANG C,Qi Y.Euclidean and Hermitian LCD MDS codes[J].Designs Codes and Crypto-graphy,2018,86(11):2605-2618.
[11] CARLET C,MESNAGER S,TANG C,Qi Y,PELLIKA-AN R.Linear codes over Fq are equivalent to LCD codes for q>3[J].IEEE Transactions on Information Theory,2018,64(4):3010-3017.
[12] ZHOU Z,LI X,TANG C,DING C.Binary LCD codes and self-orthogonal codes from a generic construction[J].IEEE Transactions on Information Theory,2019,65(1):16-27.
[13] JITMAN S,MANKEAN T.Matrix-product constructions for Hermitian self-orthogonal codes[J].arXiv preprint,2017,arXiv:1710.04999.
[14] HUFFMAN W C,PLESS V.Fundamentals of Error-Correcting codes[M].Cambridge:Cambridge university press,2010.48-52.
[15] J H Van LINT.Introduction to Coding Theory[M].Berlin:Springer,1999.64-65. |