[1] AGGARWAL A,KUMAR M,RAWAT T K.Design of two-dimensional FIR filters with quadrantally symmetric properties using the 2D L1-method[J].IET Signal Processing,2019,13(3):262-272.
[2] ARAVENA J L,GU G.Weighted least mean square design of 2-D FIR digital filters:the general case[J].IEEE Transactions on Signal Processing,1996,44(10):2568-2578.
[3] CAPIZZI G, SCIUTO G L.A novel 2-D FIR filter design methodology based on a Gaussian-based approximation[J].IEEE Signal Processing Letters,2019,26(2):362-366.
[4] DHABAL S,VENKATESWARAN P.A novel accelerated artificial bee colony algorithm for optimal design of two dimensional FIR filter[J].Multidimensional Systems and Signal Processing,2017,28(2):471-493.
[5] DUMITRESCU B.Trigonometric polynomials positive on frequency domains and applications to 2-D FIR filter design[J].IEEE Transactions on Signal Processing,2006,54(11):4282-4292.
[6] HANNA M T.Weighted least squares design of two-dimensional zero-phase FIR filters in the continuous frequency domain[J]. IEEE Transactions on Circuits and Systems-II,1996,43(7):534-537.
[7] HONG X Y,LAI X P,ZHAO R J.Matrix-based algorithms for constrained least-squares and minimax designs of 2-D FIR filters[J].IEEE Transactions on Signal Processing,2013,64(14):3620-3631.
[8] HONG X Y,LAI X P,ZHAO R J.A fast design algorithm for elliptic-error and phase-error constrained LS 2-D FIR filters[J].Multidimensional Systems and Signal Processing,2016,27(2):477-491.
[9] LAI X P.Optimal design of nonlinear-phase FIR filters with prescribed phase error[J].IEEE Transactions on Signal Processing,2009,57(9):3399-3410.
[10] LAI X P,CHENG Y.A sequential constrained least-square approach to minimax design of 2-D FIR filters[J].IEEE Transactions on Circuits and Systems-II,2007,54(11):994-998.
[11] LANG M C,SELESNICK I W,BURRUS C S.Constrained least squares design of 2-D FIR filters[J].IEEE Transactions on Signal Processing,1996,44(5):1234-1241.
[12] LU W S.A unified approach for the design of 2-D digital filters via semidefinite programming[J].IEEE Transactions on Circuits and Systems-I,2002,49(6):814-826.
[13] LU W S,HINAMOTO T.Two-dimensional digital filters with sparse coefficients[J].Multidimensional Systems and Signal Processing,2011,22(1):173-189.
[14] WANG H,ZENG R,CHENG X M,JIAN Z H.An iterative technique for optimally designing a separable 2D FIR filter[J].IEEJ Transactions on Electrical and Electronic Engineering,2018,13(4):622-626.
[15] ZHAO R J,LAI X P.Efficient 2-D based algorithms for WLS design of 2-D FIR filters with arbitrary weighting functions[J].Multidimensional Systems and Signal Processing,2013,24(3):417-434.
[16] ZHAO R J,LAI X P,HONG X Y,LIN Z P.A matrix-based IRLS algorithm for the least lp-norm design of 2-D FIR filters[J].Multidimensional Systems and Signal Processing,2019,30(1):1-15.
[17] ZHAO R J,LAI X P,LIN Z P.Weighted least squares design of 2-D FIR filters using a matrix-based generalized conjugate gradient method[J].Journal of the Franklin Institute,2016,353(8):1759-1780.
[18] ZHU W P,AHMAD M O,SWAMY M N S.A closed-form solution to the least-square design problem of 2-D linear-phase FIR filters[J].IEEE Transactions on Circuits and Systems-II,1997,44(12):1032-1039.
[19] ZHU W P,AHMAD M O,SWAMY M N S.A least-squares design approach for 2-D FIR filters with arbitrary frequency response[J].IEEE Transactions on Circuits and Systems-II,1999,46(8):1027-1034.
[20] CEVHER V,BECKER S,SCHMIDT M.Convex optimization for big data:scalable,randomized,and parallel algorithms for big data analytics[J].IEEE Signal Processing Magazine,2014,31(5):32-43.
[21] SLAVAKIS K,GIANNAKIS G B,MATEOS G.Modeling and optimization for big data analytics:(statistical) learning tools for our era of data deluge[J].IEEE Signal Processing Magazine,2014,31(5):18-31.
[22] BOYD S,PARIKH N,CHU E,et al.Distributed optimization and statistical learning via the alternating direction method of multipliers[J].Foundations and Trends® in Machine Learning,2011,3(1):1-122.
[23] ROBINSON D P,TAPPENDEN R.A flexible ADMM algorithm for big data applications[J].Journal of Scientific Computing,2017,71(1):435-467.
[24] ALMEIDA M S,FIGUEIREDO M.Deconvolving images with unknown boundaries using the alternating direction method of multipliers[J].IEEE Transactions on Image Processing,2013,22(8):3074-3086.
[25] LIAVAS A P,SIDIROPOULOS N D.Parallel algorithms for constrained tensor factorization via alternating direction method of multipliers[J].IEEE Transactions on Signal Processing,2014,63(20):5450-5463.
[26] MAROS M,JALDEN J.ADMM for distributed dynamic beamforming[J].IEEE Transactions on Signal and Information Processing over Networks,2018,4(2):220-235.
[27] MINAEE S,WANG Y.An ADMM approach to masked signal decomposition using subspace representation[J].IEEE Transactions on Image Processing,2019,28(7):3192-3204.
[28] SOUTO N,DINIS R.MIMO detection and equalization for single-carrier systems using the alternating direction method of multipliers[J].IEEE Signal Processing Letters,2016,23(12):1751-1755.
[29] TANG B,LI J,LIANG J L.Alternating direction method of multipliers for radar waveform design in spectrally crowded environments[J].Signal Processing,2018,142:398-402.
[30] WANG W D,WANG J J,ZHANG Z L.Block-sparse signal recovery via e2/e1-2 minimisation method[J].IET Signal Processing,2018,12(4):422-430.
[31] YANG J T,LIN J R,SHI Q J,LI Q.An ADMM-based approach to robust array pattern synthesis[J].IEEE Signal Processing Letters,2019,26(6):898-902.
[32] ZHU Y P,DENG B W,JIANG A M,LIU X F,TANG Y B,YAO X.ADMM-based TDOA estimation[J].IEEE Communications Letters,2018,22(7):1406-1409.
[33] LAI X P,CAO J W,ZHAO R J,LIN Z P.A relaxed ADMM algorithm for WLS design of linear-phase 2D FIR filters[A].Proceedings of the 23rd International Conference on Digital Signal Processing[C].New York:IEEE,2018.1-5.
[34] LAI X P,CAO J W,HUANG X F,WANG T L,LIN Z P.A maximally split and relaxed ADMM for regularized extreme learning machines[J].IEEE Transactions on Neural Networks and Learning Systems,2019,DOI:10.1109/TNNLS.2019.2927385. |