[1] NAUSS R M.The 0-1 knapsack problem with multiple choice constraints[J].European Journal of Operational Research,1978,2(2):125-131.
[2] BALINTFY J L,ROSS G T,SINHA P,et al.A mathematical programming system for preference and compatibility maximized menu planning and scheduling[J].Mathematical Programming,1978,15(1):63-76.
[3] SINHA P,ZOLTNERS A A.Integer programming models for sales resource allocation[J].Management Science,1980,26(3):242-260.
[4] RONG A Y,FIGUEIRA J R,KLAMORTH K.Dynamic programming based algorithms for the discounted{0-1}knapsack problem[J].Applied Mathematics and Computation,2012,218(12):6921-6933.
[5] HE Y C,WANG X Z,HE Y L,et al.Exact and approximate algorithms for discounted{0-1}knapsack problem[J].Information Sciences,2016,369:634-647.
[6] 冯艳红,杨娟,贺毅朝,王改革.差分进化帝王蝶优化算法求解折扣{0-1}背包问题[J].电子学报,2018,46(6):1343-1350. FENG Y H,YANG J,HE Y C,et al.Monarch butterfly optimization algorithm with differential evolution for the discounted{0-1}knapsack problem[J].Acta Electronica Sinica,2018,46(6):1343-1350.(in Chinese)
[7] HE Y C,XIE H,WONG T L,et al.A novel binary artificial bee colony algorithm for the set-union knapsack problem[J].Future Generation Computer Systems,2018,78(1):77-86.
[8] WEI Z Q,HAO J K.Iterated two-phase local search for the Set-Union Knapsack Problem[J].Future Generation Computer Systems,2019,101(07):1005-1017.
[9] PISINGER D.A minimal algorithm for the multiple-choice knapsack problem[J].European Journal of Operational Research,2007,83(2):394-410.
[10] MARTELLO S,TOTH P P.Dynamic programming and strong bounds for the 0-1 knapsack problem[J].Management Science,1999,45(3):414-424.
[11] DYER M E,KAYA N,WALKER J.A branch and bound algorithm for solving the multiple-choice knapsack problem[J].Journal of Computational and Applied Mathematics,1984,11(2):231-249.
[12] BALAS E,ZEMEL E.An algorithm for large zero-one knapsack problems[J].Operations Research,1980,28(5):1130-1154.
[13] MARTELLO S,TOTH P.A new algorithm for the 0-1 knapsack problem[J].Management Science,1988,34(5):633-644.
[14] MARTELLO S,TOTH P.Knapsack Problems:Algorithms and Computer Implementations[M]. New Jersey:John Wiley&Sons,Inc.1990.
[15] PISINGER D.An expanding-core algorithm for the exact 0-1 knapsack problem[J].European Journal of Operational Research,1995,87(1):175-187.
[16] 王熙照,贺毅朝.求解背包问题的演化算法[J].软件学报,2017,28(01):1-16. WANG X Z,HE Y C.Evolutionary algorithms for knapsack problems[J].Journal of Software,2017,28(01):1-16.(in Chinese)
[17] 吴虎胜,张凤鸣,战仁军,李浩,梁晓龙.利用改进的二进制狼群算法求解多维背包问题[J].系统工程与电子技术,2015,37(05):1084-1091. WU H S,ZHANG F M,ZHAN R J,et al.Improved binary wolf pack algorithm for solving multidimensional knapsack problem[J].Systems Engineering and Electronics,2015,37(05):1084-1091.(in Chinese)
[18] 李迎,张璟,刘庆,张伟.求解大规模多背包问题的高级人工鱼群算法[J].系统工程与电子技术,2018,40(03):710-716. LI Y,ZHANG J,LIU Q,et al.Advanced artificial fish swarm algorithm for large scale multiple knapsack problem[J].Systems Engineering and Electronics,2018,40(03):710-716.(in Chinese)
[19] 薛俊杰,王瑛,孟祥飞,等.二进制反向学习烟花算法求解多维背包问题[J].系统工程与电子技术,2017,39(02):451-458. XUE J J,WANG Y,MENG X F,et al.Binary opposite back-ward learning fire works algorithm for multidimensional knapsack problem[J].Systems Engineering and Electronics,2017,39(02):451-458.(in Chinese)
[20] 印桂生,崔晓晖,董宇欣,杨雪.面向离散优化问题的改进二元粒子群算法[J].哈尔滨工程大学学报,2015,36(02):191-195. YIN G S,CUI X H,DONG Y X,et al.An improved binary particle swarm optimization for discrete optimization problems[J].Journal of Harbin Engineering University,2015,36(02):191-195.(in Chinese)
[21] 于永新,张新荣.基于蚁群系统的多选择背包问题优化算法[J].计算机工程,2003(20):75-76+84. YU Y X,ZHANG X R.Optimization algorithm for multiple-choice knapsack problem based on ant colony system[J].Computer Engineering,2003(20):75-76+84.(in Chinese)
[22] 韩燕燕,马良,赵小强.多选择背包问题的人工蜂群算法[J].计算机应用研究,2012,29(03):862-864. HAN Y Y,MA L,ZHAO X Q.Artificial bee colony algorithm for multi-choice knapsack problem[J].Application Research of Computers,2012,29(03):862-864.(in Chinese)
[23] IBARAKI T,HASEGAWA T,TERANAKA K,et al.The multiple-choice knapsack problem[J].Journal of the Operations Research Society of Japan,1978,21(01):59-95.
[24] 华中生,张斌.求解可分离连续凸二次背包问题的直接算法[J].系统工程与电子技术,2005,27(2):331-334. HUA Z S,ZHANG B.Direct algorithm for separable continuous convex quadratic knapsack problem[J].Systems Engineering and Electronics,2005,27(2):331-334.(in Chinese)
[25] 王粉兰.非线性整数规划问题的若干新算法[D].上海:上海大学,2006. WANG F L.New Algorithms for Nonlinear Integer Programming Problems[D].Shanghai:Shanghai University,2006.(in Chinese)
[26] ZHENG X,SUN X L,LI D,et al.Successive convex approximations to cardinality-constrained convex programs:a piecewise-linear DC approach[J].Computational Optimization and Applications,2014,59(1-2):379-397.
[27] SINHA P,ZOLTNERS A A.The multiple-choice knapsack problem[J].Operations Research,1979,27(3):503-515.
[28] DYER M E,RIHA W O,WALKER J.A hybrid dynamic programming/branch-and-bound algorithm for the multiple-choice knapsack problem[J].Journal of Computational and Applied Mathematics,1995,58(1):43-54.
[29] CLAUTIAUX F,SADYKOV R,VANDERBECK F,et al.Combining dynamic programming with filtering to solve a four-stage two-dimensional guillotine-cut bounded knapsack problem[J].Discrete,2018,29,18-44.
[30] PFERSCHY U,SCATAMACCHIA R.Improved dynamic programming and approximation results for the knapsack problem with setups[J].International Transactions in Operational Research,2017.667-682.
[31] LIU G S,LI J J,YANG H D,et al.Approximate and branch-and-bound algorithms for the parallel machine scheduling problem with a single server[J].Journal of the Operational Research Society,2019,70(9):1-17.
[32] SUNG C S,CHO Y K.Branch-and-bound redundancy optimization for a series system with multiple-choice constraints[J].IEEE Transactions on Reliability,1999,48(2):108-117.
[33] 郁磊,史峰,王辉,等.MATLAB智能算法30个案例分析[M].北京:北京航空航天大学出版社,2011.130-136. |