[1] Carreira J,Zisserman A.Quo Vadis,action recognition? A new model and the kinetics dataset[A].Proceedings of CVPR[C].USA:IEEE,2017.6299-6308.
[2] Sudhakaran S,Escalera S,Lanz O.LSTA:Long short-term attention for egocentric action recognition[A].Proceedings of CVPR[C].USA:IEEE,2019.9954-9963.
[3] YAN An,WANG Yali,LI Zhifeng,QIAO Yu.PA3D:Pose-Action 3D machine for video recognition[A].Proceedings of CVPR[C].USA:IEEE,2019.7922-7931.
[4] SHI Lei,ZHANG Yifan,CHENG Jian,LU Hanqing.Two-stream adaptive graph convolutional networks for skeleton-based action recognition[A].Proceedings of CVPR[C].USA:IEEE,2019.12026-12035.
[5] Yuan Y,Wang D,Wang Q.Memory-augmented temporal dynamic learning for action recognition[A].The Thirty-Third AAAI Conference on Artificial Intelligence[C].AAAI,2019.9167-9175.
[6] 田国会,尹建芹,闫云章,李国栋.基于混合高斯模型和主成分分析的轨迹分析行为识别方法[J].电子学报,2016,44(1):143-149. TIAN Guo-hui,YIN Jian-qin,YAN Yun-zhang,LI Guo-dong.Gaussian mixture models and principal component analysis based human trajectory behavior recognition[J].Acta Electronica Sinica,2016,44(1):143-149.(in Chinese)
[7] DING Wenwen,LIU Kai,XU Biao,CHENG Fei.Skeleton-based human action recognition via screw matrices[J].Chinese Journal of Electronics,2017,26(4):790-796.
[8] 罗会兰,王婵娟.行为识别中一种基于融合特征的改进VLAD编码方法[J].电子学报,2019,47(1):49-58. LUO Hui-lan,WANG Chan-juan.An improved VLAD coding method based on fusion feature in action recognition[J].Acta Electronica Sinica,2019,47(1):49-58.(in Chinese)
[9] 郑兴华,孙喜庆,吕嘉欣,鲜征征,李磊.基于深度学习和智能规划的行为识别[J].电子学报,2019,47(8):1661-1668. ZHENG Xing-hua,SUN Xi-qing,LU Jia-xin,XIAN Zheng-zheng,LI Lei.Action recognition based on deep learning and artificial intelligence planning[J].Acta Electronica Sinica,2019,47(8):1661-1668.(in Chinese)
[10] Shu T,Todorovic S,Zhu S C.CERN:Confidence-energy recurrent network for group activity recognition[A].Proceedings of CVPR[C].USA:IEEE,2017.4255-4263.
[11] Ibrahim M S,Muralidharan S,Deng Z,et al.A hierarchical deep temporal model for group activity recognition[A].Proceedings of CVPR[C].USA:IEEE,2016.1971-1980.
[12] Yan R,Tang J,Shu X,et al.Participation-contributed temporal dynamic model for group activity recognition[A].2018 ACM Multimedia Conference[C].USA:ACM,2018.1292-1300.
[13] Simonyan K,Zisserman A.Two-stream convolutional networks for action recognition in videos[A].NIPS 2014[C].NIPS,2014.568-576.
[14] Wang L,Xiong Y,Wang Z,et al.Temporal segment networks:towards good practices for deep action recognition[A].European Conference on Computer Vision[C].ECCV,2016.20-36.
[15] Zhu Y,Lan Z,Newsam S,et al.Hidden two-stream convolutional networks for action recognition[A].Asian Conference on Computer Vision[C].ACCV,2018.363-378.
[16] Ramanathan V,Huang J,Abu-El-Haija S,et al.Detecting events and key actors in multi-person videos[A].Proceedings of CVPR[C].USA:IEEE,2016.3043-3053.
[17] Qi M,Qin J,Li A,et al.stagNet:an attentive semantic rnn for group activity recognition[A].European Conference on Computer Vision[C].ECCV,2018.101-118.
[18] Deng Z,Vahdat A,Hu H,et al.Structure inference machines:recurrent neural networks for analyzing relations in group activity recognition[A].Proceedings of CVPR[C].USA:IEEE,2016.4772-4781.
[19] Wang M,Ni B,Yang X.Recurrent modeling of interaction context for collective activity recognition[A].Proceedings of CVPR[C].USA:IEEE,2017.3048-3056.
[20] Choi W,Shahid K,Savarese S.What are they doing?:Collective activity classification using spatio-temporal relationship among people[A].IEEE 12th International Conference on Computer Vision Workshops,ICCV Workshops[C].USA:IEEE,2009.1282-1289.
[21] Kong L,Qin J,Huang D,et al.Hierarchical attention and context modeling for group activity recognition[A].Proceedings of ICASSP[C].USA:IEEE,2018.1328-1332.
[22] Tang Y,Zhang P,Hu J F,et al.Latent embeddings for collective activity recognition[A].Proceedings of the 14th IEEE International Conference on Advanced Video and Signal based Surveillance[C].USA:IEEE,2017.1-6.
[23] 豆贺贺.基于视频特征的多人行为识别研究[D].南京:南京邮电大学,2016.1-61. |