[1] 腾讯移动安全实验室.2019年上半年手机安全报告[OL].https://m.qq.com/security_lab/news_detail_517.html,2019-07-18/2020-03-01.
[2] Naway A,Li Y.A review on the use of deep learning in android malware detection[J].International Journal of Computer Science and Mobile Computing,2018,7(10):42-58.
[3] Huang H,Cong Z,Zeng J,et al.Android malware development on public malware scanning platforms:A large-scale data-driven study[A].Proceedings of the IEEE International Conference on Big Data[C].Washington D.C:IEEE,2016.1090-1099.
[4] Yang W,Zhang Y,Li J,et al.Appspear:Bytecode decrypting and dex reassembling for packed android malware[A].International Workshop on Recent Advances in Intrusion Detection[C].Cham:Springer,2015.359-381.
[5] 乐洪舟,张玉清,王文杰,等.Android 动态加载与反射机制的静态污点分析研究[J].计算机研究与发展,2017,54(2):313-327. Yue Hongzhou,Zhang Yuqing,Wang Wenjie,et al.Android static taint analysis of dynamic loading and reflection mechanism[J].Journal of Computer Research and Development,2017,54(2):313-327.(in Chinese)
[6] Wang X,Zhu S,Zhou D,et al.Droid-AntiRM:Taming control flow anti-analysis to support automated dynamic analysis of android malware[A].Proceedings of the 33rd Annual Computer Security Applications Conference[C].USA:ACM,2017.350-361.
[7] Hoffmann J,Ussath M,Holz T,et al.Slicing droids:Program slicing for smali code[A].Proceedings of the 28th Annual ACM Symposium on Applied Computing[C].USA:ACM,2013.1844-1851.
[8] Arzt S,Rasthofer S,Fritz C,et al.Flowdroid:Precise context,flow,field,object-sensitive and lifecycle-aware taint analysis for android Apps[J].ACM SIGPLAN Notices,2014,49(6):259-269.
[9] Li L,Bartel A,Klein J,et al.I know what leaked in your pocket:Uncovering privacy leaks on android apps with static taint analysis[J].arXiv Preprint,2014,arXiv:1404.7431.
[10] Enck W,Gilbert P,Han S,et al.TaintDroid:an information-flow tracking system for realtime privacy monitoring on smartphones[J].ACM Transactions on Computer Systems(TOCS),2014,32(2):5.
[11] Arp D,Spreitzenbarth M,Hubner M,et al.DREBIN:Effective and explainable detection of android malware in your pocket[A].Proceedings of the Network and Distributed System Security Symposiu[C].SanDiego:ISOC,2014.1-12.
[12] Feizollah A,Anuar N B,Salleh R,et al.AndroDialysis:Analysis of android intent effectiveness in malware detection[J].Computers & Security,2017,65:121-134.
[13] Pengwei LI,Jianming FU,Chao XU,et al.Differentiating malicious and benign android App operations using second-step behavior features[J].Chinese Journal of Electronics,2019,28(5):944-952.
[14] 王兆国,李城龙,张洛什,等.一种基于行为链的 Android 应用隐私窃取检测方法[J].电子学报,2015,43(9):1750-1755. WANG Zhao-guo,LI Cheng-long,ZHANG Luo-shi,et al.A privacy stealing detection method based on behavior-chain for android applications[J].Acta Electronica Sinica,2015,43(9):1750-1755.(in Chinese)
[15] 张鹏,牛少彰,黄如强.基于资源签名的 Android 应用相似性快速检测方法[J].电子学报,47(9):1913-1918. ZHANG Peng,NIU Shao-zhang,HUANG Ru-qiang.A fast and resource-based detection approach of similar android application[J].Acta Electronica Sinica,2019,47(9):1913-1918.(in Chinese)
[16] 王蕊,苏璞睿,杨轶,等.一种抗混淆的恶意代码变种识别系统[J].电子学报,2011,39(10):2322-2330. WANG Rui,SU Purui,YANG Yi,et al.An anti obfuscation malware variants identification system[J].Acta Electronica Sinica,2011,39(10):2322-2330.(in Chinese)
[17] Mclaughlin N,Rincon J M D,Kang B J,et al.Deep android malware detection[A].Proceedings of the ACM Conference on Data & Application Security & Privacy[C].Scottsdale,AZ:ACM,2017.301-308.
[18] Zhenlong,Yuan,Yongqiang,et al.Droid detector:Android malware characterization and detection using deep learning[J].Tsinghua Science & Technology,2016,21(1):114-123.
[19] Desnos A.Androguard:Reverse Engineering,Malware and Goodware Analysis of Android Applications and More[OL].https://code.google.com/p/androguard/,2013-03-26/2020-03-01.
[20] UI/Application Exerciser[OL].http://Monkey.developer.android.com/guide/developing/tools/monkey.html,2020-03-01.
[21] Li Y,Yang Z,Guo Y,et al.Droidbot:A lightweight UI-guided test input generator for android[A].IEEE/ACM 39th International Conference on Software Engineering Companion(ICSE-C)[C].USA:IEEE,2017.23-26.
[22] Seveniruby.基于appium的app自动遍历工具[OL].https://github.com/seveniruby/AppCrawler,2020-03-01.
[23] Jonathan.Appium:Mobile App Automation Made Awesome[OL].http://appium.io/,2020-03-01.
[24] Li B,Zhang Y,Li J,et al.AppSpear:Automating the hidden-code extraction and reassembling of packed android malware[J].Journal of Systems and Software,2018,140:3-16.
[25] Alex Black.Deep Learning for Java,Scala & Clojure on Hadoop,Spark & GPUs [OL].https://github.com/eclipse/deeplearning4j,2020-03-01.
[26] Arash Habibi Lashkari,Andi Fitriah A Kadir,Hugo Gonzalez,et al.Towards a network based framework for android malware detection and characterization[A].Proceedings of the 15th International Conference on Privacy,Security and Trust[C].Calgary:IEEE,2017.233-234.
[27] Jiang X,Zhou Y.Dissecting android malware:Characterization and evolution[A].Proceedings of the IEEE Symposium on Security and Privacy[C].San Francisco’Bay Area:IEEE,2012.95-109.
[28] Wei F,Li Y,Roy S,et al.Deep ground truth analysis of current android malware[A].Proceedings of the International Conference on Detection of Intrusions and Malware,And Vulnerability Assessment[C].Bonn:SIDAR,2017.252-276.
[29] Shiqi L,Shengwei T,Long Y,et al.Android malicious code classification using deep belief network[J].KSII Trans on Internet Inf Syst,2018,12(1):454-475.
[30] Martinelli F,Marulli F,Mercaldo F.Evaluating convolutional neural network for effective mobile malware detection[J].Procedia Comput Sci,2017,1(112):2372-2381.
[31] Alshahrani H,Mansourt H,Thorn S,et al.DDefender:Android application threat detection using static and dynamic analysis[A].Proceedings of the International Conference on Consumer Electronics[C].Las Vegas:IEEE,2018.1-6.
[32] Vinayakumar R,Soman K P,Poornachandran P,Sachin Kumar S.Detecting Android malware using Long Short-term Memory(LSTM)[J].J Intell Fuzzy Syst,2018,34(3):1277-1288. |