[1] Turrin R,Quadrana M,Condorelli A,et al.30music listening and playlists dataset[A].Proceedings of the 9th ACM Conference on Recommender Systems[C].New York:Association for Computing Machinery,2015.1-4.
[2] 任开旭,王玉龙,刘同存,等.融合多维语义表示的概率矩阵分解模型[J].电子学报,2019,47(9):1848-1854. Ren K X,Wang Y L,Liu T C,et al.A probabilistic matrix factorization model based on multidimensional semantic representation learning[J].Acta Electronica Sinica,2019,47(9):1848-1854.(in Chinese)
[3] Rendle S,Freudenthaler C,Gantner Z,et al.BPR:Bayesian personalized ranking from implicit feedback[A].Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence[C].Virginia:AUAI Press,2009.452-461.
[4] Van den Oord A,Dieleman S,Schrauwen B.Deep content-based music recommendation[A].Advances in Neural Information Processing Systems[C].New York:NIPS,2013.2643-2651.
[5] Dias R,Fonseca M J.Improving music recommendation in session-based collaborative filtering by using temporal context[A].2013 IEEE 25th International Conference on Tools with Artificial Intelligence[C].Piscataway:IEEE,2013.783-788.
[6] Wang D,Deng S,Xu G.Sequence-based context-aware music recommendation[J].Information Retrieval Journal,2018,21(2-3):230-252.
[7] He R,Kang W C,McAuley J.Translation-based recommendation[A].Proceedings of the Eleventh ACM Conference on Recommender Systems[C].New York:Association for Computing Machinery,2017.161-169.
[8] He R,McAuley J.Fusing similarity models with markov chains for sparse sequential recommendation[A].2016 IEEE 16th International Conference on Data Mining (ICDM)[C].Washington:IEEE Computer Society,2016.191-200.
[9] Tavakol M,Brefeld U.Factored MDPs for detecting topics of user sessions[A].Proceedings of the 8th ACM Conference on Recommender Systems[C].New York:Association for Computing Machinery,2014.33-40.
[10] Twardowski B.Modelling contextual information in session-aware recommender systems with neural networks[A].Proceedings of the 10th ACM Conference on Recommender Systems[C].New York:Association for Computing Machinery,2016.273-276.
[11] Kabbur S,Ning X,Karypis G.Fism:factored item similarity models for top-n recommender systems[A].Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].New York:Association for Computing Machinery,2013.659-667.
[12] 潘博,于重重,张青川,等.基于词性与词序的相关因子训练的word2vec改进模型[J].电子学报,2018,46(8):1976-1982. Pan B,Yu C C,Zhang Q C,et al.The improved model for word2vec based on part of speech and word order[J].Acta Electronica Sinica,2018,46(8):1976-1982.(in Chinese)
[13] Hidasi B,Karatzoglou A,Baltrunas L,et al.Session-based recommendations with Recurrent Neural Networks[OL].https://arxiv.org/abs/1511.06939,2015.
[14] Tan Y K,Xu X,Liu Y.Improved recurrent neural networks for session-based recommendations[A].Proceedings of the 1st Workshop on Deep Learning for Recommender Systems[C].New York:Association for Computing Machinery,2016.17-22.
[15] Quadrana M,Karatzoglou A,Personalizing session-based recommendations with hierarchical recurrent neural networks[A].Proceedings of the Eleventh ACM Conference on Recommender Systems[C].New York:Association for Computing Machinery,2017.130-137.
[16] Chatzis S P,Christodoulou P,Andreou A S.Recurrent latent variable networks for session-based recommendation[A].Proceedings of the 2nd Workshop on Deep Learning for Recommender Systems[C].New York:Association for Computing Machinery,2017.38-45.
[17] Wu C,Yan M.Session-aware information embedding for e-commerce product recommendation[A].Proceedings of the 2017 ACM on Conference on Information and Knowledge Management[C].New York:Association for Computing Machinery,2017.2379-2382.
[18] Song Y,Elkahky A M,He X.Multi-rate deep learning for temporal recommendation[A].Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval[C].New York:Association for Computing Machinery,2016.909-912.
[19] Tang J,Wang K.Personalized top-n sequential recommendation via convolutional sequence embedding[A].Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining[C].New York:Association for Computing Machinery,2018.565-573.
[20] 冯建周,宋沙沙,王元卓,等.基于改进注意力机制的实体关系抽取方法[J].电子学报,2019,47(8):1692-1700. Feng J Z,Song S S,Wang Y Z,et al.Entity relation extraction based on improved attention mechanism[J].Acta Electronica Sinica,2019,47(8):1692-1700.(in Chinese)
[21] Li J,Ren P,Chen Z,et al.Neural attentive session-based recommendation[A].Proceedings of the 2017 ACM on Conference on Information and Knowledge Management[C].New York:Association for Computing Machinery,2017.1419-1428.
[22] Liu Q,Zeng Y,Mokhosi R,et al.STAMP:short-term attention/memory priority model for session-based recommendation[A].Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining[C].New York:Association for Computing Machinery,2018.1831-1839.
[23] Sachdeva N,Gupta K,Pudi V.Attentive neural architecture incorporating song features for music recommendation[A].Proceedings of the 12th ACM Conference on Recommender Systems[C].New York:Association for Computing Machinery,2018.417-421.
[24] Zhang S,Tay Y,Yao L,et al.Next Item Recommendation with Self-Attention[OL].https://arxiv.org/abs/1808.06414v2,2018.
[25] Zhou G,Zhu X,Song C,et al.Deep interest network for click-through rate prediction[A].Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining[C].New York:Association for Computing Machinery,2018.1059-1068.
[26] Kang W C,McAuley J.Self-attentive sequential recommendation[A].2018 IEEE International Conference on Data Mining (ICDM)[C].Washington:IEEE Computer Society,2018.197-206.
[27] Goldberg Y,Levy O.word2vec Explained:deriving Mikolov et al.'s negative-sampling word-embedding method[OL].https://arxiv.org/abs/1402.3722v1,2014. |