电子学报 ›› 2020, Vol. 48 ›› Issue (9): 1850-1859.DOI: 10.3969/j.issn.0372-2112.2020.09.024
罗文宇, 许丽, 邵霞
收稿日期:
2018-11-21
修回日期:
2020-02-27
出版日期:
2020-09-25
作者简介:
基金资助:
LUO Wen-yu, XU Li, SHAO Xia
Received:
2018-11-21
Revised:
2020-02-27
Online:
2020-09-25
Published:
2020-09-25
摘要: 无线环境通常表示能够显著改变电磁波在通信设备之间传播的物体集合.软件定义无线环境允许针对不同通信设备以最适宜的方式进行电磁传播规律的编程定制,为无线通信的发展提供了一种新的视角.相比被动抑制无线信道影响的传统通信技术,软件定义无线环境有着更高维度的调控自由度,在新一代移动通信特别是毫米波及太赫兹通信领域具有很大的应用潜力.本文首先介绍了软件定义无线环境的概念、历史沿革及其研究现状.然后给出了其基础模型及相对传统手段展现出来的性能优势.接着总结了软件定义无线环境的系统设计、网络服务支持、网络通信协议等关键技术,并指出软件定义无线环境未来发展所面临的挑战.最后凝练了几个面向新一代移动通信技术的软件定义无线环境研究方向.
中图分类号:
罗文宇, 许丽, 邵霞. 软件定义无线环境:技术、机遇与挑战[J]. 电子学报, 2020, 48(9): 1850-1859.
LUO Wen-yu, XU Li, SHAO Xia. Software-Defined Wireless Environments:Technique, Opportunities and Challenges[J]. Acta Electronica Sinica, 2020, 48(9): 1850-1859.
[1] C Liaskos,A Tsioliaridou,et al.Using any surface to realize a new paradigm for wireless communications[J].Communications of the ACM,2018,61(11):30-33. [2] I F Akyildiz,C Han,S Nie.Combating the distance problem in the millimeter wave and terahertz frequency bands[J].IEEE Communications Magazine,2018,56(6):102-108. [3] I F Akyildiz, et al.5G roadmap:10 key enabling technologies[J].Computer Networks,2016,106(4):17-48. [4] C Liaskos,S Nie,A Tsioliaridou,A Pitsillides,S Ioannidis,I Akyildiz.A novel communication paradigm for high capacity and security via programmable indoor wireless environments in next generation wireless systems[J].Elsevier Ad Hoc Networks,2019,87(4):1-16. [5] J Chen,D Steinmetzer,et al.Pseudo lateration:millimeter-wave localization using a single RF chain[A].Wireless Communications and Networking Conference[C] San Francisco,CA:IEEE,2017.1-6. [6] Z Pi,J Choi,R Heath.Millimeter-wave gigabit broadband evolution toward 5G:fixed access and backhaul[J].IEEE Communications Magazine,2016,54(4):138-144. [7] 胡国兵,吴珊珊,杨忠,杨莉,赵嫔姣,宋军.LFM/BPSK混合调制信号盲处理结果可信性评估:一种简化的似然比算法[J].电子学报,2019,47(9):1891-1897. HU Guo-bing,WU Shan-shan,YANG Zhong,YANG Li,ZHAO Pin-jiao,SONG Jun.Credibility evaluation for blind processing results of LFM/BPSK hybird modulation signals:A simple likelihood ratio based approach[J].Acta Electronica Sinica,2019,47(9):1891-1897.(in Chinese) [8] J Matamoros, C Anton-Haro.Optimal network size and encoding rate for wireless sensor network-based decentralized estimation under power and bandwidth constraints[J].IEEE Transactions on Wireless Communications,2011,10(4):1121-1131. [9] 雷维嘉,王娟兵,谢显中.大规模MIMO中继系统中多用户物理层安全传输方案[J].电子学报,2018,46(12):2878-2887. LEI Wei-jia,WANG Juan-bing,XIE Xian-zhong.Security transmission scheme on physical layer for multi-user in massive MIMO relay system[J].Acta Electronica Sinica,2018,46(12):2878-2887.(in Chinese) [10] W Ma,C Qi.Channel estimation for 3-D lens millimeter wave massive MIMO system[J].IEEE Communications Letters,2017,21(9):2045-2048. [11] 季中恒,季新生,黄开枝,陈亚军.基于多天线波束赋形的CRN分布式上行功率控制算法[J].电子学报,2019,47(12):2472-2479. JI Zhong-heng,JI Xin-sheng,HUANG Kai-zhi,CHEN Ya-jun.CRN distributed uplink power control algorithm with multi-antenna beamforming[J].Acta Electronica Sinica,2019,47(12):2472-2479.(in Chinese) [12] A S Ameen,D Berraki,A Doufexi,A R Nix.LTE-Advanced network inter-cell interference analysis and mitigation using 3D analogue beamforming[J].IET Communications,2018,12(13):1563-1572. [13] H Chou,Z Yan.Parallel-plate luneburg lens antenna for broadband multibeam radiation at millimeter-wave frequencies with design optimization[J].IEEE Transactions on Antennas and Propagation,2018,66(11):5794-5804. [14] D V Q Rodrigues,D Rodriguez,J Wang,C Li.Smaller and with more bars:a relay transceiver for IoT/5G applications[J].IEEE Microwave Magazine,2020,21(1):96-100. [15] H Yang, et al.A programmable metasurface with dynamic polarization,scattering and focusing control[J].Scientific Reports,2016,6(5):356-362. [16] B Zhu,Y Feng,J Zhao,et al.Switchable metamaterial refector/absorber for different polarized electromagnetic waves[J].Appl Phys Lett,2010,97(5):51-56. [17] B Banerjee.An Introduction to Metamaterials and Waves in Composites[M].Boca Raton,FL:CRC Press/Taylor & Francis Group,2011. [18] Hsiao H,Cheng H C,Tsai D P.Fundamentals and applications of metasurfaces[J].Small Methods,2017,1(4):160-171. [19] T Hand,S Cummer.Characterization of tunable metamaterial elements using MEMS switches[J].IEEE Antennas and Wireless Propagation Letters,2007,6(4):401-404. [20] X He.Tunable terahertz graphene metamaterials[J].Carbon,2015,82(2):229-237. [21] Cui T J,Qi M Q,Wan X,et al.Coding metamaterials,digital metamaterials and programmable metamaterials[J].Light:Science & Applications,2014,3(10):218-227. [22] C Liaskos,et al.Design and development of software defined metamaterials for nanonetworks[J].IEEE Circuits and Systems Magazine,2015,15(4):12-25. [23] Zhao J,Yang X,Dai J Y,et al.Controlling spectral energies of all harmonics in programmable way using time-domain digital coding metasurface[J].Computing Research Repository,2018,6(2):231-238. [24] Abadal S,Liaskos C,Tsioliaridou A,et al.Computing and communications for the software-defined metamaterial paradigm:a context analysis[J].IEEE Access,2017,5(3):6225-6235. [25] A O Diallo,R Czarny,B Loiseaux,S Holé.Comparison between a thin lens antenna made of structured dielectric material and conventional lens antennas,in Q-Band in a compact volume[J].IEEE Antennas and Wireless Propagation Letters,2018,17(2):307-310. [26] A C Tasolamprou,A Pitilakis,et al.The software-defined metasurfaces concept and electromagnetic aspects[A].10th International Conference on Metamaterials,Photonic Crystals and Plasmonics (META19)[C].Lisbon:WikiCFP,2019.23-26. [27] A E Minovich,A E Miroshnichenko,et al.Functional and nonlinear optical metasurfaces:Optical metasurfaces[J].Laser & Photonics Reviews,2015,9(2):195-213. [28] S Lucyszyn,Advanced RF MEMS,ser.The Cambridge RF and Microwave Engineering Series[M].NY:Cambridge University Press,2010. [29] K Iwaszczuk,et al.Flexible metamaterial absorbers for stealth applications at terahertz frequencies[J].Optics Express,2012,20(1):635-61. [30] C Zhang,W Xu,M Chen.Hybrid zero-forcing beamforming/orthogonal beamforming with user selection for MIMO broadcast channels[J].IEEE Communications Letters,2009,13(1):10-12. [31] B Choi,B Park,J Lee.Near-field beamforming loop array for selective wireless power transfer[J].IEEE Microwave and Wireless Components Letters,2015,25(11):748-750. [32] J Xu,Z Zhong,B Ai.Wireless powered sensor networks:collaborative energy beamforming considering sensing and circuit power consumption[J].IEEE Wireless Communications Letters,2016,4(8):344-347. [33] T V X Phuong,G Yang,W Susilo.Hidden ciphertext policy attribute-based encryption under standard assumptions[J].IEEE Transactions on Information Forensics and Security,2016,11(1):35-45. [34] J Lee.Full-duplex relay for enhancing physical layer security in multi-hop relaying systems[J].IEEE Communications Letters,2015,19(4):525-528. [35] J Hajny,L Malina,V Zeman.Practical anonymous authentication-designing anonymous authentication for everyday use[A].Proceedings of the International Conference on Security and Cryptography[C].Seville:IEEE,2011.405-408. [36] X Qiu,T Jiang,S Wu,M Hayes.Physical layer authentication enhancement using a gaussian mixture model[J].IEEE Access,2018,6(1):53583-53592. [37] M Raspopoulos.Multidevice map-constrained fingerprint-based indoor positioning using 3-D ray tracing[J].IEEE Transactions on Instrumentation and Measurement,2018,67(2):466-476. [38] A C Tasolamprou et al.Intercell wireless communication in software-defined metasurfaces[A] 2018 IEEE International Symposium on Circuits and Systems (ISCAS)[C].Florence,Italy:IEEE,2018.1-5 [39] J Chen,Y Liang,Y Pei,H Guo.Intelligent reflecting surface:A programmable wireless environment for physical layer security[J].IEEE Access,2019,7(5):82599-82612. [40] C Liaskos,S Nie,A Tsioliaridou,A Pitsillides,S Ioannidis,I Akyildiz.A new wireless communication paradigm through software-controlled metasurfaces[J].IEEE Communications Magazine,2018,56(9):162-169. [41] Hougne P D,Imani M F,Fink M,et al.Precise localization of multiple noncooperative objects in a disordered cavity by wave front shaping[J].Physical Review Letters,2018,121(6):63-65. [42] Del H P,M F I,Sleasman T,et al.Dynamic metasurface aperture as smart around-the-corner motion detector[J].Sci Rep,2018,8(1):889-895. [43] S Dash,C Liaskos,I F Akyildiz,A Pitsillides.Widebandperfect absorption polarization insensitive reconfigurable graphene metasurface for THz wireless environment[A].IEEE Workshop on Microwave Theory and Techniques in Wireless Communication (MTTW'19)[C].Riga,Latvia:IEEE,2019.36-40. [44] F Zhang,Q Zhao,W Zhang et al.Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal[J].Applied Physics Letters,2010,97(13):134-136. [45] B Zhu,Y Feng,J Zhao et al.Switchable metamaterial reflector/absorber for different polarized electromagnetic waves[J].Applied Physics Letters,2010,97(5):51-55. [46] M Decker,C Kremers,A Minovich,et al.Electro-optical switching by liquid-crystal controlled metasurfaces[J].Optics Express,2013,21(7):8879-8885. [47] J Y Ou,E Plum,J Zhang,N Zheludev.An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared[J].Nat Nanotechnol,2013,8(4):252-255. [48] S Liu,Y Long,et al.Bioinspired adaptive microplate arrays for magnetically tuned optics[J].Advanced Optical Materials,2017,5(3):160-167. [49] F Bourquin,G Caruso,M Peigney,D Siegert.Magnetically tuned mass dampers for optimal vibration damping of large structures[J].Smart Mater Struct,2014,23(8):850-859. [50] I Chatzakis,L Luo,J Wang,et al.Reversible modulation and ultrafast dynamics of terahertz resonances in strongly photoexcited metamaterials[J].Physical Review Letters,2012,86(12):125-132. [51] T Driscoll,S Palit,M M Qazilbash,et al.Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide[J].Applied Physics Letters,2008,93(1):241-245. [52] T Driscoll,H-T.Kim,B-G.Chae,et al.Memory metamaterials[J].Science,2009,325(5947):1518-1521. [53] D Wang,L Zhang,Y Gong,et al.Multiband switchable terahertz quarter-wave plates via phase-change metasurfaces[J].IEEE Photonics Journal,2016,8(1):550-558. [54] J Zhao,Q Cheng,J Chen,et al.A tunable metamaterial absorber using varactor diodes[J].New Journal of Physics,2013,15(4):430-439. [55] C Mias,J H Yap.A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid[J].IEEE Transactions on Antennas and Propagation,2017,55(7):1955-1962. [56] H-X Xu,S Tang,S Ma,et al.Tunable microwave metasurfaces for high-performance operations:Dispersion compensation and dynamical switch[J].Scientific Reports,2016,6(5):1825-1832. [57] D Chicherin,S Dudorov,M.Sterner,et al.Micro-fabricated high impedance surface for millimeter wave beam steering applications[A].2008 33rd International Conference on Infrared,Millimeter and Terahertz Waves[C].New Jersey:IEEE,2008.1-3. [58] M Caironi.Large Area and Flexible Electronics[M].New Jersey:John Wiley & Sons,2015. [59] M A U Karim,S Chung,E Alon,V Subramanian.Fully inkjet-printed stress-tolerant microelectromechanical reed relays for large-area electronics[J].Advanced Electronic Materials,2016,2(5):285-293. [60] R Parashkov,E Becker,T Riedl,H-H Johannes,W Kowalsky.Large area electronics using printing methods[J].Proceedings of the IEEE,2005,93(7):1321-1329. [61] A C Tasolamprou,et al.Exploration of intercell wireless millimeter-wave communication in the landscape of intelligent metasurfaces[J].IEEE Access,2019,7(1):122931-122948. [62] C Liaskos,A Tsioliaridou,S Nie,A Pitsillides,S Ioannidis,I F Akyildiz.On the network-layer modeling and configuration of programmable wireless environments[J].IEEE/ACM Transactions on Networking,2019,27(4):1696-1713. [63] J Cui,Q Lu,H Zhong,M Tian,L Liu.A load-balancing mechanism for distributed SDN control plane using response time[J].IEEE Transactions on Network and Service Management,2016,15(4):1197-1206. [64] Tsioliaridou A,Liaskos C,Pitsillides A,et al.A novel protocol for network-controlled metasurfaces[A].ACM International Conference on Nanoscale Computing & Communication[C].New York,NY:ACM,2017.347-351. [65] O Tsilipakos,A Pitilakis,et al.Software-defined metasurfaces:the VISORSURF project approach[A].13th International Congress on Artificial Materials for Novel Wave Phenomena[C].Rome:Royal Society of Chemistry,2019.1024-1027. [66] M Di Renzo,et al.Smart radio environments empowered by ai reconfigurable meta-surfaces:An idea whose time has come[J].EURASIP J.Wireless Communication and Networking,2019,129(3):338-346. [67] Letourneux F,Lostanlen Y,Corre Y.3D simulation software platform for 5G channel modeling and analysis[A] IEEE International Workshop on Computer Aided Modelling & Design of Communication Links & Networks[C].Piscataway,NJ:IEEE,2016.897-890. [68] A Nordrum.The internet of fewer things[news] [J].IEEE Spectrum,2016,53(10):12-13. [69] Q Wu,R Zhang.Towards smart and reconfigurable environment:intelligent reflecting surface aided wireless network[J].IEEE Communications Magazine,2020,58(1):106-112. [70] I F Akyildiz,et al.Nanonetworks:A new communication paradigm[J].Computer Networks,2008,52(12):2260-2279. [71] C Liaskos,et al.Design and development of software defined metamaterials for nanonetworks[J].IEEE Circuits and Systems Magazine,2015,15(4):12-25. [72] Zappone,M di Renzo,M Debbah.Wireless networks design in the era of deep learning:Model-based,AI-based,or both?[J].IEEE Transactions on Communications,67(10):7331-7376. [73] ITU-T.Y.3172 architectural framework for machine learning in future networks including IMT-2020,ITU-T SG13 plenary,[EB/OL]https://www.itu.int/md/T17-SG13-190304-TD-PLEN/en,Mar.2019. [74] A Taha,M Alrabeiah,A Alkhateeb.Enabling large intelligent surfaces with compressive sensing and deep learning.Apr.2019,[EB/OL] http://arxiv.org/abs/1904.10136. [75] C Liaskos,A Tsioliaridou,S Nie,A Pitsillides,S Ioannidis,I Akyildiz.An interpretable neural network for configuring programmable wireless environments[A] 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)[C].Cannes,France:IEEE,2019.1-5. |
[1] | 丁青锋, 李怡浩, 徐梦引. 去蜂窝大规模MIMO-NOMA系统能效优化算法[J]. 电子学报, 2023, (): 1-10. |
[2] | 刘焕淋, 胡俊岭, 任杰, 胡会霞, 唐畅, 陈浩楠. 基于光路负载均衡和邻域匹配的串扰感知资源分配方法[J]. 电子学报, 2022, 50(11): 2746-2753. |
[3] | 李韦萍, 王凯辉, 桑博涵, 余建军. 双信道WDM光纤无线集成太赫兹传输系统[J]. 电子学报, 2022, 50(10): 2311-2317. |
[4] | 杨小龙, 李欣玥, 周牧, 王勇, 何维. 基于多维模糊映射AP优化的WLAN室内定位方法[J]. 电子学报, 2022, 50(8): 1875-1884. |
[5] | 兰子林, 邹喜华, 白文林, 李沛轩, 李阳, 潘炜, 闫连山, 蒋灵明, 陈亮. 光载信息能量同传方案及其通信检测应用[J]. 电子学报, 2022, 50(4): 804-810. |
[6] | 苏林林, 陈亮, 陈菲菲, 周鑫, 焦振航, 刘钊良. 面向B5G/6G的GFDM信号高精度测距与定位研究[J]. 电子学报, 2022, 50(4): 849-859. |
[7] | 李世银, 鲁姗妹, 马帅, 张凡, 徐子涵, 王洪梅, 李宗艳, 熊海良. 有限字符输入DCO-OFDMA系统的资源分配算法研究[J]. 电子学报, 2022, 50(3): 574-584. |
[8] | 刘焕淋, 王展鹏, 陈勇, 张彤, 熊琪乐, 胡俊岭. 物理损伤感知的多芯光纤网络动态路由资源分配方法[J]. 电子学报, 2022, 50(2): 502-507. |
[9] | 史宏强, 李岳衡, 黄平, 谭跃跃, 刘陕陕, 居美艳. 基于APD与PIN接收机的UWOC系统误码率性能优化研究[J]. 电子学报, 2022, 50(2): 446-454. |
[10] | 荆楠, 班容键, 田立勤, 王林, 刘丰. 基于符号定时偏差补偿的过零点采样自干扰消除[J]. 电子学报, 2022, 50(2): 305-313. |
[11] | 卢霆威, 王泽平, 刘梦, 刘青青, 陈兵, 林岳, 吴挺竹, 陈忠. 基于可见光通信技术的全双工以太网通信系统设计[J]. 电子学报, 2022, 50(1): 45-53. |
[12] | 张敏惠, 童杨, 王怡. 基于Kappa-mu/M分布的联合多用户分集与并行中继继选择RF/FSO系统性能研究[J]. 电子学报, 2022, 50(1): 26-35. |
[13] | 熊琴琴, 陈纯毅, 于海洋, 姚海峰, 宋佳雪, 娄岩. 交叉相关双路分集OAM湍流光信道接收信号模拟研究[J]. 电子学报, 2022, 50(1): 18-25. |
[14] | 刘焕淋, 温濛, 陈勇, 任杰, 胡俊岭. 基于全光节点频谱集中度和频谱离散转换的业务调度方法[J]. 电子学报, 2022, 50(1): 135-141. |
[15] | 赵雄文, 张钰, 秦鹏, 王晓晴, 耿绥燕, 宋俊元, 刘瑶, 李思峰. 空天地一体化无线光通信网络关键技术及其发展趋势[J]. 电子学报, 2022, 50(1): 1-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||