[1] Bridges L.The changing face of malware[J].Network Security,2008,2008(1):17-20. [2] Symantec.2019 internet security threat report[J/OL].https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf,2020-06-28. [3] Al-Rimy B A S,Maarof M A,Shaid S Z M.Ransomware threat success factors,taxonomy,and countermeasures:a survey and research directions[J].Computers & Security,2018,74(5):144-166. [4] Kok S H,Abdullah A,Jhanjhi N Z,et al.Ransomware,threat and detection techniques:A review[J].International Journal Computer Science and Network Security,2019,19(2):136-146. [5] Kok S H,Abdullah A,Jhanjhi N Z,et al.Prevention of crypto-ransomware using a pre-encryption detection algorithm[J].Computers,2019,8(4):79. [6] Sgandurra D,Muñoz-González L,Mohsen R,et al.Automated dynamic analysis of ransomware:benefits,limitations and use for detection[J].Cryptography and Security,2016,9:03-20. [7] San C C,Thwin M M S,Htun N L.Malicious software family classification using machine learning multi-class classifiers[J].Computational Science and Technology,2019,41:423-433. [8] 任卓君,陈光,卢文科.基于N-gram特征的恶意代码可视化方法[J].电子学报,2019,47(10):2108-2115. REN Zhuo-jun,CHEN Guang,LU Wen-ke.Malware visualization methods based on N-gram features[J].Acta Electronica Sinica,2019,47(10):2108-2115.(in Chinese) [9] Zhang W,Yoshida T,Tang X.A comparative study of TF-IDF,LSI and multi-words for text classification[J].Expert Systems with Applications,2011,38(3):2758-2765. [10] 李鹏伟,姜宇谦,薛飞扬,黄佳佳,徐超.一种基于深度学习的强对抗性Android恶意代码检测方法[J].电子学报,2020,48(8):1502-1508. LI Peng-wei,JIANG Yu-qian,XUE Fei-yang,HUANG Jia-jia,XU Chao.Arobust approach for android malware detection based on deep learning[J].Acta Electronica Sinica,2020,48(8):1502-1508.(in Chinese) [11] Zhang H,Xiao X,Mercaldo F,et al.Classification of ransomware families with machine learning based on N-gram of opcodes[J].Future Generation Computer Systems,2019,90:211-221. [12] Harrington P.Machine Learning in Action[M].USA:Manning Publications Co,2012.122-136. [13] 郭春,陈长青,申国伟,蒋朝惠.一种基于可视化的勒索软件分类方法[J].信息网络安全,2020,20(4):31-39. GUO Chun,CHEN Chang-qing,SHEN Guo-wei,et al.A ransomware classification method based on visualization[J].Netinfo Security,2020,20(4):31-39.(in Chinese) [14] Sharma S,Singh S.Texture-Basedautomated classification of ransomware[J/OL].https://link.springer.com/article/10.1007/s40031-020-00499-w.2020-10-31. [15] Choudhary S P,Vidyarthi M D.A simple method for detection of metamorphic malware using dynamic analysis and text mining[J].Procedia Computer Science,2015,54:265-270. [16] Damodaran A,Troia FD,Visaggio CA,et al.A comparison of static,dynamic,and hybrid analysis for malware detection[J].Computer Virology and Hacking Techniques,2017,13(1):1-12. [17] Hampton N,Baig Z,Zeadally S.Ransomware behavioural analysis on windows platforms[J].Journal of Information Security and Applications,2018,40:44-51. [18] Kharaz A,Arshad S,Mulliner C,et al.UNVEIL:A large-scale,automated approach to detecting ransomware[A].25th USENIX Security Symposium[C].Austin,TX:Association,2016.757-772. [19] Vinayakumar R,Soman K P,Velan K K,et al.Evaluating shallow and deep networks for ransomware detection and classification[A].International Conference on Advances in Computing,Communications and Informatics (ICACCI)[C].Croatia:IEEE,2017.259-265. [20] Le Cun Y,Bengio Y,Hinton G.Deep learning[J].Nature,2015,521(7553):436-444. [21] Feng Y,Liu C,Liu B.Poster:A new approach to detecting ransomware with deception[J/OL].http://173.236.186.201/TC/SP2017/poster-abstracts/IEEE-SP17_Posters_paper_26.pdf.2020-09-24. [22] Scaife N,Carter H,Traynor P,et al.Cryptolock (and drop it):Stopping ransomware attacks on user data[A].IEEE 36th International Conference on Distributed Computing Systems (ICDCS)[C].Nara Japan:IEEE,2016.303-312. [23] Morato D,Berrueta E,Magaña E,et al.Ransomware early detection by the analysis of file sharing traffic[J].Journal of Network and Computer Applications,2018,124:14-32. [24] 吴玉佳,李晶,宋成芳,常军.基于高效用神经网络的文本分类方法[J].电子学报,2020,48(2):279-284. WU Yu-jia,LI Jing,SONG Cheng-fang,CHANG Jun.High utility neural networks for text classification[J].Acta Electronica Sinica,2020,48(2):279-284.(in Chinese) [25] Singh K,Agrawal S.Comparative analysis of five machine learning algorithms for IP traffic classification[A].International Conference on Emerging Trends in Networks and Computer Communications (ETNCC)[C].Udaipur,India:IEEE,2011.33-38. |