[1] 郑冰.面向肺部CT影像表征的多层语义检索[D].哈尔滨:哈尔滨工程大学,2013.
[2] 南洋.基于深度学习的粗标记胃癌病理切片图像分割算法[D].长沙:湖南大学,2018.
[3] 杨少戈.基于深度学习的冠脉造影图像分割[D].北京:北京邮电大学,2019.
[4] 杨远航.面向深度学习的医学影像分析系统及其在胃镜视频分割中的实践[D].杭州:浙江大学,2018.
[5] 赵旭.基于医学先验的多尺度乳腺超声肿瘤实例分割方法[D].哈尔滨:哈尔滨工业大学,2019.
[6] 张晓林.基于卷积神经网络的腹部CT图像分割[D].镇江:江苏大学,2019.
[7] 宫进昌,赵尚义,王远军.基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(04):420-424. GONG Jin-chang,ZHAO Shang-yi,WANG Yuan-jun.Research progress of medical image segmentation based on deep learning[J].Chinese Journal of Medical Physics,2019,36(04):420-424.(in Chinese)
[8] 白辰甲.基于计算机视觉和深度学习的自动驾驶方法研究[D].哈尔滨:哈尔滨工业大学,2017.
[9] 邓琉元,杨明,王春香,等.基于环视相机的无人驾驶汽车实例分割方法[J].华中科技大学学报(自然科学版),2018,46(12):24-29. DENG Liu-yuan,YANG Ming,WANG Chun-xiang,et al.Method for segmentation of unmanned car instance based on surround view camera[J].Journal of Huazhong University of Science & Technology (Natural Science Edition),2018,46(12):24-29.(in Chinese)
[10] 姜立标,台啟龙.基于实例分割方法的复杂场景下车道线检测[J].机械设计与制造工程,2019,48(05):113-118. JIANG Li-biao,TAI Qi-long.Lane line detection in complex scenes based on instance segmentation method[J].Mechanical Design and Manufacturing Engineering,2019,48(05):113-118.(in Chinese)
[11] 惠健,秦其明,许伟,等.基于多任务学习的高分辨率遥感影像建筑实例分割[J].北京大学学报(自然科学版),2019,55(06):1067-1077. HUI Jian,QIN Qi-ming,XU Wei,et al.Segmentation of high-resolution remote sensing image building instance based on multi-task learning[J].Journal of Peking University (Natural Science Edition),2019,55(06):1067-1077.(in Chinese)
[12] 李澜.基于Mask R-CNN的高分辨率光学遥感影像的目标检测与实例分割[D].武汉:武汉大学,2018.
[13] 帅靖文.自然场景中的文本检测研究[D].成都:电子科技大学,2018.
[14] 张小爽.基于实例分割的场景图像文字检测[D].杭州:浙江大学,2018.
[15] 邓丹.PixelLink:基于实例分割的自然场景文本检测算法[D].杭州:浙江大学,2018.
[16] 谢元澄,于增源,姜海燕,等.小麦麦穗几何表型测量的精准分割方法研究[J].南京农业大学学报,2019,42(05):956-966. XIE Yuan-cheng,YU Zeng-yuan,JIANG Hai-yan,et al.Research on accurate segmentation method of wheat ear geometric phenotype measurement[J].Journal of Nanjing Agricultural University,2019,42(05):956-966.(in Chinese)
[17] 乔虹,冯全,赵兵,等.基于Mask R-CNN的葡萄叶片实例分割[J].林业机械与木工设备,2019,47(10):15-22. QIAO Hong,FENG Quan,ZHAO Bing,et al.Grape leaf instance segmentation based on Mask R-CNN[J].Forestry Machinery and Woodworking Equipment,2019,47(10):15-22.(in Chinese)
[18] 冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2011. Gonzal R.Digital Image Processing[M].Beijing:Publishing House of Electronics Industry,2011.(in Chinese)
[19] 苏雯.语义分割及其在图像检索中的应用[D].合肥:中国科学技术大学,2018.
[20] Hinton G E,Salakhutdinov R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
[21] Hariharan B,Arbeláez P,Girshick R,et al.Simultaneous detection and segmentation[A].European Conference on Computer Vision[C].Cham:Springer,2014.297-312.
[22] Arbeláez P,Pont-Tusent J,Barron J T,et al.Multiscale combinatorial grouping[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2014.328-335.
[23] LeCun Y,Bottou L,Bengio Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
[24] Duda R O,Hart P E,Stork D G.Pattern Classification[M].USA:John Wiley & Sons,2012.
[25] Neubeck A,Van Gool L.Efficient non-maximum suppression[A].18th International Conference on Pattern Recognition (ICPR'06)[C].Hong Kong:IEEE,2006.850-855.
[26] Pinheiro P O,Collobert R,Dollár P.Learning to segment object candidates[A].Advances in Neural Information Processing Systems[C].Canada:NIPS,2015.1990-1998.
[27] Pinheiro P O,Lin T Y,Collobert R,et al.Learning to refine object segments[A].European Conference on Computer Vision[C].Cham:Springer,2016.75-91.
[28] Long J,Shelhamer E,Darrell T.Fully convolutional networks for semantic segmentation[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].Boston:IEEE,2015.3431-3440.
[29] Dai J,He K,Li Y,et al.Instance-sensitive fully convolutional networks[A].European Conference on Computer Vision[C].Cham:Springer,2016.534-549.
[30] Li Y,Qi H,Dai J,et al.Fully convolutional instance-aware semantic segmentation[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].Honolulu:IEEE,2017.2359-2367.
[31] Ren S,He K,Girshick R,et al.Faster R-CNN:Towardsreal-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
[32] Girshick R.Fast r-cnn[A].Proceedings of the IEEE International Conference on Computer Vision[C].Santiago:IEEE,2015.1440-1448.
[33] He K,Gkioxari G,Dollár P,et al.Mask r-cnn[A].Proceedings of the IEEE International Conference on Computer Vision[C].Venice Italy:IEEE,2017.2961-2969.
[34] Liu S,Qi L,Qin H,et al.Path aggregation network for instance segmentation[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].Salt Lake City:IEEE,2018.8759-8768.
[35] Chen X,Girshick R,He K,et al.Tensormask:A foundation for dense object segmentation[A].Proceedings of the IEEE International Conference on Computer Vision[C].Seoul:IEEE,2019.2061-2069.
[36] Lazarow J,Lee K,Tu Z.Learning instance occlusion for panoptic segmentation[A].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition[C].Seattle,WA:IEEE,2020.10720-10729.
[37] 张国光.基于神经网络的有遮挡图像分割方法[J].电子科技,2015,28(05):132-135,139. ZHANG Guo-Guang.An occluded image segmentation method based on neural network[J].Electronic Technology,2015,28(05):132-135,139.(in Chinese)
[38] 师晓利,尚怡君,褚玉晓.安防监控中人员遮挡区域的有效图像分割研究[J].计算机仿真,2015,32(06):452-455. SHI Xiao-li,SHANG Yi-jun,CHU Yu-xiao.Research on effective image segmentation of people's occlusion area in security surveillance[J].Computer Simulation,2015,32(06):452-455.(in Chinese)
[39] 刘伟.基于Kinect遮挡条件下行人的深度图像分割[J].重庆邮电大学学报(自然科学版),2014,26(02):271-275. LIU Wei.Depth image segmentation of pedestrians based on Kinect occlusion conditions[J].Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition),2014,26(02):271-275.(in Chinese)
[40] 李晶晶.局部遮挡物体的轮廓修复算法研究[D].南昌:南昌航空大学,2014.
[41] Everingham M,Eslami S A,Van G L,et al.The pascal visual object classes challenge:A retrospective[J].International Journal on Computer Vision,2014,11(1):98-136.
[42] Silberman N,Hoiem D,Kohli P,et al.Indoor segmentation and support inference from rgbd images[A].European Conference on Computer Vision[C].Berlin,Heidelberg:Springer,2012.746-760.
[43] Chen X,Mottaghi R,Liu X,et al.Detect what you can:Detecting and representing objects using holistic models and body parts[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].Columbus,OH:IEEE,2014.1971-1978.
[44] Lin T Y,Maire M,Belongie S,et al.Microsoft coco:Common objects in context[A].European Conference on Computer Vision[C].Cham:Springer,2014.740-755.
[45] CORDTS M,OMRAN M,RAMOS S,et al.The cityscapes dataset for semantic urban scene understanding[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].Las Vegas,NV:IEEE,2016.3213-3223.
[46] Zhou B,Zhao H,Puig X,et al.Scene parsing through ade20k dataset[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].Honolulu:IEEE,2017.633-641.
[47] Zhang Y,Chen H,He Y,et al.Road segmentation for all-day outdoor robot navigation[J].Neurocomputing,2018,314:316-325.
[48] Turpin A,Sholer F.User performance versus precision measures for simple search tasks[A].Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval[C].Seattle Washington:ACM,2006.11-18.
[49] 诸葛瑞彬.基于卷积神经网络的单幅图像去雨研究[D].桂林:广西师范大学,2019.
[50] Fu X,Liang B,Huang Y,et al.Lightweight pyramid networks for image deraining[J].IEEE Transactions on Neural Networks and Learning Systems,2020,31(6):1794-1807.
[51] 安鹤男,涂志伟,张昌林,等.单张图像去雨的多流细节加强网络[J].计算机系统应用,2019,28(11):202-207. AN He-nan,TU Zhi-wei,ZHANG Chang-lin,et al.Multi-stream detail enhancement network to remove rain from a single image[J].Computer System Applications,2019,28(11):202-207.(in Chinese)
[52] 寇大磊,钱敏,权冀川,等.基于多尺度卷积网络的快速图像去雾算法[J].计算机工程与应用,2020,56(20):191-198. KOU Da-lei,QIAN Min,QUAN Ji-chuan,et al.Fast image defogging algorithm based on multi-scale convolutional network[J].Computer Engineering and Applications,2020,56(20):191-198.(in Chinese)
[53] Gao Y,Li Q,Li J.Single image dehazing via a dual-fusion method[J].Image and Vision Computing,2020,94:103868.
[54] Wu Y,Qin Y,Wang Z,et al.Densely pyramidal residual network for UAV-based railway images dehazing[J].Neurocomputing,2020,371:124-136.
[55] 赵阳,王剑,曹浩男.基于自适应改进的遥感图像去雾算法研究[J].电子设计工程,2019,27(19):164-169. ZHAO Yang,WANG Jian,CAO Hao-nan.Research on remote sensing image defogging algorithm based on adaptive improvement[J].Electronic Design Engineering,2019,27(19):164-169.(in Chinese)
[56] 丁春玲.基于CNN网络的图像去雾霾技术研究[J].西安文理学院学报(自然科学版),2019,22(05):57-60. DING Chun-ling.Research on image removal technology based on CNN network[J].Journal of Xi'an University of Arts and Science (Natural Science Edition),2019,22(05):57-60.(in Chinese)
[57] 许骏.面向火灾场景的图像去烟雾系统研究[D].上海:东华大学,2016.
[58] 寇大磊,权冀川,张仲伟.基于深度学习的目标检测框架进展研究[J].计算机工程与应用,2019,55(11):25-34. KOU Da-lei,QUAN Ji-chuan,ZHANG Zhong-wei.Research on the progress of target detection framework based on deep learning[J].Computer Engineering and Applications,2019,55(11):25-34.(in Chinese)
[59] Liu C,Chen L C,Schroff F,et al.Auto-deeplab:Hierarchical neural architecture search for semantic image segmentation[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].Long Beach:IEEE,2019.82-92. |